
Advanced SQL - Subqueries and 

Complex Joins 


Outline for Today: 

•	 The URISA Proceedings database - more practice with increasingly 
complicated SQL queries 

• Advanced Queries: 
o	 Sub-queries: one way to nest or a cascade query is to stick a 

query in the 'where' clause: e.g., find parcels owned by XXX 
from that set of parcels that had a fire. This is a powerful way to 
take advantage of the fact that any SQL query returns a table -
which can they be the starting point of another SQL query. 

o	 Self-joins: the 'where' clause can become quite complex with 
many joins and related 'and' and 'or' conditions. But handling 'and' 
conditions is a little tricky. How can you find papers the use both 
keyword Y and keyword Z if the table relating papers and 
keywords only shows one pair at a time? 

• The zoning variance database 
o	 Understanding the schema and rationale for the Boston zoning 

variance database (which we use later to map them as study 
spatial patterns as well as to illustrate concepts about distributed 
databases and community empowerment. 

o	 Using the history of zoning database to understand how real 
databases evolve over time 

More URISA database Queries 

• ...from the URISA database* page 
• Additional notes on SQL*Plus formatting* added to SQL Notes* 

Advanced Queries: Subqueries 

A subquery can be nested within a query 

* Kindly refer to Lecture Notes section 



Example: Find the parcel with the highest estimated loss from a fire 

SELECT * 
FROM FIRES 
WHERE ESTLOSS = 

(SELECT MAX(ESTLOSS)
FROM FIRES);

Alternatively, include the subquery as an inline "table" in the FROM clause: 
SELECT F.* 
FROM FIRES F,

(SELECT MAX(ESTLOSS) MAXLOSS
FROM FIRES) M

WHERE F.ESTLOSS = M.MAXLOSS; 

Example: Find the parcels that have not had a fire 

SELECT * 
FROM PARCELS 
WHERE PARCELID NOT IN 

(SELECT PARCELID
FROM FIRES); 

or, more efficiently, 

SELECT * 
FROM PARCELS P 
WHERE NOT EXISTS 

(SELECT NULL
FROM FIRES F 
WHERE P.PARCELID = F.PARCELID); 

Example: Find the parcels that have not obtained a permit: 

SELECT * 
FROM PARCELS 
WHERE (PID, WPB) NOT IN 

(SELECT PID, WPB
FROM PERMITS); 

or, more efficiently, 

SELECT * 
FROM PARCELS P 



 WHERE NOT EXISTS 
(SELECT NULL

FROM FIRES F 
WHERE P.PARCELID = F.PARCELID); 

Advanced Queries: Self-Join 

A table can be joined to itself 

Example: Find the paper numbers in the URISA database for papers that use both 
keyword code 601 AND 602. 

The following query does not work, because it is not possible for value for a single 
column in a single row to contain two values at the same time: 

SELECT PAPER 
FROM MATCH 
WHERE CODE = 601 
AND CODE = 602;

This type of query requires a self-join, which acts as if we had two copies of the MATCH 
table and are joining them to each other. 

SELECT M1.PAPER 
FROM MATCH M1, MATCH M2
WHERE M1.PAPER = M2.PAPER 
AND M1.CODE = 601 
AND M2.CODE = 602;

If you have trouble imagining the self-join, pretend that we actually created two copies of 
MATCH, M1 and M2: 

CREATE TABLE M1 AS 
SELECT * FROM MATCH;

CREATE TABLE M2 AS 
SELECT * FROM MATCH; 

Then, we could join M1 and M2: 

SELECT M1.PAPER 
FROM M1, M2
WHERE M1.PAPER = M2.PAPER 
AND M1.CODE = 601 
AND M2.CODE = 602;

The self-join allows us to perform this sort of operation without actually having to copy 
the table. We can just act as if we had two copies. 



Now, let's add the titles to the paper numbers: 

SELECT M1.PAPER, T.TITLE 
FROM MATCH M1, MATCH M2, TITLES T 
WHERE M1.PAPER = M2.PAPER 

AND M1.PAPER = T.PAPER 
AND M1.CODE = 601 
AND M2.CODE = 602; 

Example: Find the time that passed between a fire on a parcel and all fires 
occurring within 300 days later on the same parcel 

SELECT F1.PARCELID, F1.FDATE FIRE1, F2.FDATE
FIRE2, 

F2.FDATE - F1.FDATE INTERVAL 
FROM FIRES F1, FIRES F2
WHERE F1.PARCELID = F2.PARCELID 
AND F2.FDATE > F1.FDATE 
AND F2.FDATE <= F1.FDATE + 300; 

Note that a number of days can be added to a date. 

The Zoning Variance Database 

Zoning Variances* Schema of ZONING table (and 
listing of related lookup tables) 

SQL examples using zoning 
variances * 

Annotated SQL queries of ZONING 
table 

1980 Census data (by Boston 
NSA)* 

Schema of 1980 Boston Census data 
(and related lookup tables) 

Schema of Decision, Use, NSA, 
Neighbrhd Lookup Tables* 

Schema of Lookup tables (second 
half of Census data web page) 

Sub-Neighborhood lookup table* 
The NSA and NEIGHBRHD tables 
(bottom of Zoning Variance web 
page) 

Grouping zoning applicants via 
'lookup' tables* Annotated SQL queries illustrating 

* Kindly refer to Lecture Notes section 



use of lookup tables to categorize 
ownership of properties seeking 
zoning variances. (These topics are 
the focus of next week's lecture and 
lab #3.) 

Zoning Variance Database 
Evolution Chart * 

Stages of evolution of the ZONING 
variance database 

* Kindly refer to Lecture Notes section 


