Minerals

Minerals are the building blocks of rocks.

Minerals record the formation and history of a rock and determine it's physical and chemical characteristics

Each mineral is characterized by:

-A specific composition

-A specific crystal structure

-A specific stability range (Pressure und Temperature)

Courtesy of the U. S. Geological Survey. Photograph in the public domain.

Diamond is pure carbon C, as is graphite

Courtesy of the U. S. Geological Survey and the Mineral Information Institute. Photograph in the public domain.

Diamond has a dense, cubic structure

Graphite has a hexagonal structure

There are thousands of minerals....

They are separated into groups based on their:

1. Crystal structure

2. Chemistry

 SiO_2 , NaCl, Au, $K_2Al_6Si_6O_{20}(OH)_4$...

1. Crystal-structure

© Fundamental Photographs - The Art of Science. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

The geometry of the crystal lattice constrains the form of the crystal

Covalent bonds

Courtesy of the U. S. Geological Survey. Photograph in the public domain. Some minerals are made up of covalent bonds characterized by shared electrons between different atoms. Diamond is a good example.

Covalent bonds

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Covalent bonds

A carbon atom in Diamond shares each one of its four valence electrons with one of its four neighboring carbon atoms and thereby reaches a stable configuration of 8 valence electrons on the L-shell, even while each atom has only 4 electrons. Most minerals, however, are composed of ionic bonds, in which cations and anions attract each other. A simple example is Halite.

Ionic bonding

Courtesy of Chris Ralph. Photograph in the public domain.

Halite NaCl is "Tablesalt" composed of Na⁺ and Cl⁻ lons.

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Unstable Cation larger than the space: Anions are pushed apart

Ionic bonds

Most stable Cation fits perfectly in the space

Stable Cation smaller than the space Anions are touching

2. Composition

Diamond

Halite

С

Courtesy of the U. S. Geological Survey. Photograph in the public domain.

Sodium Chloride, NaCl

Courtesy of Chris Ralph. Photograph in the public domain.

Both have the same Structure, But a different composition (and bonding...)

... and a different value

Systematic Mineralogy:

Separation of Minerals in Groups

Silicates

Silicates are the most comon & important rock forming minerals on Earth

Silicates are composed of a combination of SiO₄ Tetrahedrons and Cations: K⁺, Na⁺, Ca²⁺, Mg²⁺, Fe²⁺ or Al³⁺

The principal building block of rock forming minerals

The SiO₄ Tetrahedrons

Silicates are the most important rock forming minerals. They are composed of a very stable molecule made up of Silicon and Oxygen atoms. Those form through covalent bonds a SiO_4 tetrahedron.

These tetrahedra can be combined in multiple ways. For example, they can be arranged by sharing an oxygen atom or through adding different cations.

Structure of silicate minerals

cyclo-silicate

Phyllo-silicate

Inosilicates Single Chain-silicate Double chain-silicates $\begin{array}{l} \text{Tecto-silicate} \\ [\text{Al}_{x}\text{Si}_{y}\text{O}_{2(x+y)}]^{x-} \end{array}$

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Tecto-silicate

Quartz SiO₂

Quartz is one of the most common minerals. Despite that, it is consider semiprecious based on its color and shapes.

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Quartz frequently forms hexagonal prisms and pyramids.

It is the hardest of the most common minerals.

Courtesy of the Brown Family on flickr. License: CC BY.

Tecto-silicate

Forms of Silica

Silica (SiO_2) most commonly occurs as quartz.

It can however occur in microcrystaline variaties Flint, Chert and Agate forms, which form from low T fluids.

Tecto-silicate

Feldspars

Alkali-feldspar (or Orthoclase) (K⁺ and Na⁺ bearing)

Amazonite is semi-precious

Plagioclase (Na⁺ und Ca²⁺ bearing)

Feldspars are Tectosilicates in which the SiO_4 tetrahedron is combined with K⁺, Na⁺, Ca²⁺ and Al³⁺.

Tecto-silicate Feldspar group

 (b) Perspective of idealised tetragonal chain - one of the four surrounding the "tunnel" in (a).

Feldspars are Tectosilicates in which the SiO_4 tetrtahedron is combined with K⁺, Na⁺, Ca²⁺ and Al³⁺.

Fig. 244. Idealized structural pattern of orthoclase. In fact, the pseudotetragonal rings are somewhat twisted about their axis, producing the effect shown by the lower dotted tetrahedral ring in (a).

Phyllo-silicates

Courtesy of RonIJJ on flickr. License: CC BY.

Muscovite (K⁺ and Al³⁺ bearing)

"cleavage"

Mica, as clay minerals, are sheet silicates in which SiO_4 tetrahedron layers are combined with K⁺, Mg²⁺, Fe^{2+,} Al³⁺ and OH⁻.

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Biotite (K⁺, Fe²⁺ and Mg²⁺ bearing),

single-chain silicate

double-chain silicate

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Pyroxenes are single-chain-silicates in which $[SiO_4]^{4-}$ tetrahedrons are combined with Ca²⁺, Mg²⁺ and Fe²⁺ cations.

Augite is the most common Pyroxene (Ca²⁺, Mg²⁺ and Fe²⁺ bearing)

Amphiboles are Double-chain Silicates in which SiO₄ tetrahedra are combined with K⁺, Na⁺, Ca²⁺, Mg²⁺, Fe²⁺, Al³⁺ andOH⁻.

Hornblende is the most common mineral of the Amphibole group (Ca-, Mg-, Na-, Al- and Fe-bearing)

Asbestos is a fibrous Amphibole (Ca-, Mg-, Na-, Al- and Fe-bearing)

Amphiboles are Double-chain Silicates in which SiO₄ tetrahedra are combined with K⁺. Na⁺. Ca²⁺. Mo²⁺. Fe²⁺. Al³⁺ andOH⁻.

Neso-silicate

Olivine has isolated SiO₄ tetrahedra, combined by Mg^{2+} and Fe²⁺

Courtesy of Bryant Olsen on flickr. License: CC BY NC.

Olivine has a semi-precious variety (Peridote) even though it is the most common mineral in the upper mantle (-> Peridotite).

Neso-silicate

Garnet also has isolated SiO₄ tetrahedra which are combined with Ca²⁺, Al³⁺ Mg²⁺ and Fe²⁺

© Eurico Zimbres and Tom Epaminondas. Some rights reserved. License: CC-BY-SA. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Garnet is common in metamorphic rocks formed under high pressure.

Non-silcate minerals

Luckily there aren't that many which are of importance. But those few are either

Very common

And play an important role in earth processes.

The most important ones are:

Carbonates Sulfates Oxides Fluorides Sulfides Phosphates Native minerals (elements)

Or

Are an important for economic reasons.

Courtesy of Alkivar. Photograph in the public domain.

Calcite

Calcite (CaCO₃) is the main mineral in carbonates and shells of organisms

© Didier Descouens. Some rights reserved. License: CC-BY SA. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Carbonate

Dolomite

Magnesium and Calcium carbonate (Mg,Ca)CO₃ common in many old carbonates (as for example in the Dolomites)

Magnetite

Iron oxide (Fe_3O_4) is the most common Metal-oxide in most plutonic rocks. Strongly magnetic.

Hematite

Iron oxide (Fe_2O_3) , common ore mineral responsible for the red color in many Sandstones. Has been used as pigment for centuries.

Oxide

Sulfide

Galena

Lead-sulfide PbS

Pyrite

Iron-sulfide FeS₂ is very common, known as fool's-gold....

Courtesy of the U. S. Geological Survey. Photograph in the public domain.

How do I distinguish a diamond from glass?

Criteria to identify minerals:

- hardness
- density
- habit
- cleavage
- color/streak
- association
- taste
- odor

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Courtesy of Callan Bentley. Used with permission.

MIT OpenCourseWare http://ocw.mit.edu

12.001 Introduction to Geology Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.