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Abstract 

We study the trajectories of dry ice pucks launched over the surface of a smooth, 

rotating parabola viewed from both inertial and rotating frames. Experiments are 

described which are designed to help us come to a deeper understanding of frames of 

reference and the Coriolis force. 

1 Introduction 

In this laboratory we study the trajectory of a ‘frictionless’ dry ice puck sliding over a smooth 

parabolic surface. The parabola available in the lab was manufactured by pouring resin in to 

a mold on a table turning at a rate f = 2Ω = 3  rad s−1 and allowing it to solidify forming a 

highly smooth surface: it is a metre in diameter and a centimeter or so deeper in the center 

than at the periphery - see Fig.1 and section 4.2 of the appendix.1 

Place the parabola on the rotating table and, for the moment, do not spin the table up. 

Launch the puck along a radius toward its center. The puck oscillates along a straight line 

passing through the origin. Its trajectory is governed by the equation: 

d2r dh 
= −g (1) 

dt2 dr 

where r is the distance of the puck from the center of the parabola, g is the acceleration due 

to gravity and h(r) is the shape of the parabolic surface. The restoring force on the puck is 

just gravity resolved in the direction of the surface. Because the surface is parabolic i.e. of 

the form h = h(0) + ar2, where  a is a constant and h(0) is the depth of the parabola at the 

centre, then dh = 2ar –  thus the  restoring  force in  Eq.(1) is linear  in  r increasing toward 
dr 

the edge of the parabola where the surface tilt is most pronounced. Because of this linearity 

in the restoring force, the puck performs simple harmonic motion. 
1The procedure used to manufacture the parabola is described here: 

http://paoc.mit.edu/labweb/parabolic_surface.htm. 
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Figure 1: Experiments with ball bearings and dry ice ‘pucks’ on a rotating parabola. A corotating 
camera views the scene from above. 

Figure 2: Trajectory of the puck on the rotating parabolic surface in (a) the inertial frame and 
(b) the rotating frame of reference. The parabola is rotating in an anticlockwise (cyclonic) sense. 
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Now spin up the parabolic surface by rotating the table at rate f = 2Ω = 3  rad s−1 

(the speed used to manufacture the parabola), in an anticlockwise direction. If the surface 

of the parabola is indeed frictionless, then the puck, launched as before, will perform simple 

harmonic motion in a straight line even though the parabola is rotating beneath. This can 

be seen in Fig.2a where the trajectory of an observed puck in the inertial (fixed) frame of 

reference is plotted.  Note  that  because it is impossible to reduce frictional  effects to zero, in 

practice the straight line is dragged out in to an ellipse. 

But what do  we observe  if  we  place ourselves in a frame of reference  rotating  with  the  

table? The trajectory of the puck when viewed in the rotating frame (recorded by an overhead 

camera co-rotating with the parabola) is shown in Fig.2b. The puck moves in circles! The 

equation that governs the trajectory in the rotating frame is very different from Eq.(1) and 

involves, as we shall see, the Coriolis force which ‘deflects the puck to the right’. The circular 

trajectories – which are called ‘inertial circles’ – are commonly observed in the atmosphere 

and ocean. They are a consequence of observing the motion in a rotating frame of reference. 

The parabolic surface used in our experiments has the shape that the free surface of a 

fluid takes up in solid body rotation in a tank rotating at rate Ω - see section 4.2: 

Ω2r2 

h = h(0) + (2) 
2g 

where Ω is the rotation rate of the table. The surface defined by Eq.(2) is  an equipotential  

surface and so a body carefully placed on it at rest should remain at rest. Indeed if we place 

a ball-bearing on the parabolic surface rotating at speed Ω, then we see that it does not fall 

in to the center but instead finds a state of rest in which the component of gravitational 

acceleration acting on it resolved along the parabolic surface, gH , is exactly balanced by 

the outward-directed horizontal component of the centrifugal acceleration resolved in the 

surface, (Ω2r)H , as sketched in  Fig.  3.  
dh = −Ω2In the case that h is given by Eq.(2), the restoring force −g 
dr r, Eq.(1) takes  on  

the form: 

d2r 
= −Ω2 r. (3) 

dt2 

and describes simple harmonic motion with frequency Ω. 

The experiments we now describe are designed to help us come to a deeper understanding 

of frames of reference and the Coriolis acceleration. We use our rotating parabolic surface in 

conjunction with ball-bearings and a frictionless dry ice ‘puck’ to study trajectories in the 

inertial and rotating frames. 
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Figure 3: If a parabola of the form given by Eq.(2) is spun at rate Ω, then a ball carefully placed 
on it at rest does not fall in to the center but remains at rest. 

2 Experimental procedure 

We can now play games with the dry ice puck and study its trajectory on the parabolic 

turntable, both in the rotating and laboratory frames. It is useful to view the puck from 

the rotating frame using an overhead co-rotating camera. The following are useful reference 

experiments: 

1. set up the parabola on the rotating table and adjust the speed of rotation to match 

that which was used to manufacture it. The exact Ω can be checked by placing a ball 

bearing on the parabola so that is motionless in the rotating frame of reference: at the 

‘correct’ Ω the ball can  be  made  motionless  –  at which  point the  balance of forces as  

sketched Fig.(3) – without it riding up or down the surface. In the laboratory frame 

the ball follows a circular orbit around the center of the dish. 

2.	 launch the puck on a trajectory that lies within a fixed vertical plane containing the 

axis of rotation of the parabolic dish. Viewed from the laboratory the puck moves 

backwards and forwards along a straight line (the straight line will expand out in to an 

ellipse if the frictional coupling between the puck and the rotating disc is not negligible 

- see Fig.2). When viewed in the rotating frame, however, the trajectory appears as 

a circle tangent to the straight line. This is the experiment from which the results 

presented in Fig.2 are shown. These circles are called ‘inertial circles’ - see theory 

below. 

Compute the period of the oscillations of the puck in the inertial and rotating frames. 

How do they compare to one-another and Ω? 

Compute the trajectory of the puck by using the theory of inertial circles presented in 
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section 3 and compare to the observed trajectory - see 4. below 

3. again place the puck so that it appears stationary in the rotating frame, and then 

slightly perturb it. In the rotating frame the puck undergoes inertial oscillations con-

sisting of small circular orbits passing through the initial position of the unperturbed 

puck. 

4.	 use the particle tracking software to compute the trajectories of the particles and 

compare them to the theory of inertial circles presented below. 

3 Theory of Inertial circles 

It is straightforward to analyze the motion of the puck in our experiment. We adopt a 

Cartesian (x, y) coordinate in the rotating frame of reference whose origin is at the center 

of the parabolic surface. The velocity of the puck on the surface is urot = (u, v) where 

urot = dx/dt and vrot = dy/dt. Further we assume that z increases upwards in the direction 

of Ω. 

3.1 Rotating frame 

The law of motion of the puck traversing the frictionless parabolic surface are given by 

Eq.(15) of the appendix, which we write out again here: 

durot 
= −2Ω × urot 

dt 

Let’s write out Eq.(15) in component form. Noting that: 

2Ω × urot = (0, 0, 2Ω) × (urot, vrot, 0) = (−2Ωvrot, 2Ωurot, 0) 
the two horizontal components of Eq.(15) are: 

durot	 dvrot − 2Ωvrot = 0;  + 2Ωurot = 0 	 (4) 
dt	 dt 

dx dy 
urot = ; vrot = . 

dt dt 

If we launch the puck from the origin of our coordinate system x(0) = 0; y(0) = 0 (chosen 

to be the center of the rotating dish) with speed urot(0) = 0; vrot(0) = vo, the solution to the 

above is: 
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Figure 4: Trajectory of the puck studied in Section 3 in the inertial frame (straight line) and the 
rotating frame (circle). The scale of the axes are 

2
v
Ω 
o . We launch the puck from the origin of our 

coordinate system x(0) = 0; y(0) = 0 (chosen to be the center of the rotating dish) with speed 
u(0) = 0; v(0) = vo. 

urot (t) =  vo sin 2Ωt; vrot (t) =  vo cos 2Ωt 

vo vo vo 
x (t) =  − cos 2Ωt; y (t) =  sin 2Ωt 

2Ω 2Ω 2Ω 

The puck’s trajectory in the rotating frame is a circle - see Fig. 4 which should be 

compared with that observed in the experiment plotted in Fig.2b. The puck moves around 

a circle of radius of 
2
v
Ω 
o in a clockwise direction (anticyclonically) with a period 

Ω 
π . 

3.2 Inertial frame 

Now let us consider the same problem but in the non-rotating frame. The acceleration in 

a frame rotating at angular velocity Ω is related to the acceleration in an inertial frame of 

reference by Eq.(9). And so, if the balance of forces is du
dt 
rot = −2Ω × urot these two terms 

cancel out in Eq.(9), and it reduces to: 

duin 
= Ω × Ω × r. (5) 

dt 

If the origin of our inertial coordinate system lies at the center of our dish, then the above 

can be written out in component form thus: 
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duin dvin 
+ Ω2 x = 0;  + Ω2 y = 0  (6) 

dt dt 

where in means inertial. This should be compared to the equation of motion in the rotating 

frame - see Eq.(4). Note that Eq.(6) is just Eq.(3). 

The solution is: 

uin (t) = 0;  vin (t) = vo cosΩt 

vo 
xin (t) = 0;  yin (t) =  sinΩt 

Ω 

The trajectory in the inertial frame is a straight line - see Fig. 4. The length of the line 

is twice the diameter of the inertial circle and the frequency of the oscillation is one-half 
that observed in the rotating frame. 

The above solutions go a long way to explaining what is observed in the experiments 

described above and expose many of the curiosities of rotating versus non-rotating frames of 

reference. 

4 Appendix 

4.1 Transformation in to rotating coordinates 

Imagine that the puck in our rotating parabola experiment has velocity uin in the inertial 

frame. Viewed on the rotating frame, however, it has velocity urot. The two velocities are 

related through - as is evident from Fig. 5: 

uin = urot +Ω × r , (7) 

where r is the position vector of a parcel in the rotating frame and Ω × r is the vector product 

of Ω and r. Here  µ ¶ µ ¶
d d 

uin = r ; urot = r
dt dtin rot


d
where 
¡
dt r 
¢ 
in, rot 

is the rate of change of position of the puck measured in the respective 

frames. Eq.(7) suggests the following ‘rule’ for transforming the rate of change of vectors 

between frames: 
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Figure 5: On the left is the velocity vector of a particle uin in the inertial frame. On the right is 
the view from the rotating frame. The particle has velocity urot in the rotating frame. The relation 
between uin and urot is uin = urot + Ω × r where Ω × r is the velocity of a particle fixed (not 
moving) in the rotating frame at position vector r. 

µ ¶ µ ¶
d d 

= +Ω× (8) 
dt dtin rot 

A more rigorous derivation of Eq.(8) can be found in Chapter 6 of the 12.003 notes. 

Combining Eqs.(7) and (8) we see that: 

µ ¶ µ ¶ µµ ¶ ¶
duin d d 

= (urot +Ω × r) = +Ω× (urot +Ω × r) (9) 
dt dt dtin in rot µ ¶

durot 
= + 2Ω × urot + (Ω × Ω × r)

dt rot 

Thus the equation of motion of the puck in the inertial frame is: µ ¶
duin 

= applied forces/unit mass = F (10) 
dt in 

where, in the absence of friction, 

F = −gbz (11) 

is the gravitational acceleration acting on the puck, with bz a unit vector in the vertical. 

Using Eq.(9), Eq.(10) can be written in the rotating frame thus: 
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durot 
= −2Ω × u + −Ω × Ω × r −gbz (12) 

µ
dt 

¶ | {z } | {z }
rot 

Coriolis Centrifugal 

acceln acceln 

Note that Eq.(12) is the same as Eq.(10) except that u = urot and ‘apparent’ accelera-

tions, introduced by the rotating reference frame, have been placed on the right-hand side 

of Eq.(12) [just as in the gradient wind equation that describes the radial inflow experi-

ment, GFDIII]. The apparent accelerations are given names: the centrifugal acceleration 

(−Ω × Ω × r) is directed radially outward - see Fig.5; the Coriolis acceleration (−2Ω × u) 

is directed ‘to the right’ of the velocity vector (if Ω > 0 as sketched in Fig.6). 

4.1.1 Centrifugal and Coriolis acceleration 

Because centrifugal acceleration can be expressed as the gradient of a potential thus µ ¶
Ω2r2 

−Ω × Ω × r =∇
2 ³ ´ 

it is convenient to combine ∇ Ω2

2 
r2 

with gbz = ∇ (gz) - the gradient of the gravitational 
potential, gz - and write Eq.(12) in the succinct form: µ ¶

durot 
= −2Ω × urot −∇φ (13) 

dt rot 

where 

Ω2r2 

φ = gz − (14) 
2 

is the modified (by centrifugal accelerations) gravitational potential ‘measured’ in the rotat-

ing frame. 

Because our parabolic surface is constructed to ensure that φ=constant, ∇φ = 0, and  so  

Eq.(13) reduces to: 
durot 

= −2Ω × urot (15) 
dt 

This is the equation of motion governing the puck on the parablolic surface in the rotating 

frame. With the signs shown, the parcel would turn to the right in response to the Coriolis 

force if Ω > 0. 
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Figure 6: A fluid parcel moving with velocity urot in a rotating frame experiences a Coriolis 
acceleration −2Ω× urot, directed ‘to the right’ of urot if, as here, Ω is upwards, corresponding to 
anticyclonic rotation - like that of the northern hemisphere viewed from above the north pole; for 
the southern hemisphere, the sign of rotation is reversed and the deflection is to the left. 

Figure 7: Water placed in a rotating tank and insulated from external forces (both mechanical 
and thermodynamic) eventually comes in to solid body rotation in which the fluid does not move 
relative to the tank. In such a state the free surface of the water is not flat but takes on the shape 
of a parabola given by Eq.(2). 

4.2 The parabolic rotating table 

Suppose we filled a tank with water, set it turning and leave it until it comes in to solid 

body rotation. We note that the free-surface of the water is not flat - it is depressed in the 

middle and rises up slightly to its highest point along the rim of the tank, as sketched in 

Fig. 7. What’s going on? 

In solid-body rotation, urot = 0 and so Eq.(13) implies that ∇φ = 0  and so 

Ω2r2 

gz − = constant (16) 
2 

is just the modified gravitational potential, Eq.(14). We can determine the constant of 

proportionality by noting that at r = 0, z  = h(0), the height of the fluid in the  middle  of  
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the tank. Hence the depth of the fluid h is given by Eq.(2). The free surface takes on a 

parabolic  shape:  it  tilts so  that it is always perpendicular  to  the vector  g ∗ (gravity modified 

by centrifugal forces) given by g ∗ = −gbz − Ω × Ω × r. If we hung a plumb line in the frame 

of the rotating table it would point in the direction of g ∗ i.e. slightly outwards rather than 

directly down. 

The parabola available in the lab was manufactured by pouring resin in to a mold on a 

table turning at rate f = 2Ω = 3 rad s−1 and  allowing it to set  to  form  a highly smooth  

surface. Let us estimate the ‘dip’ of the free surface of the parabola by inserting numbers 

in to Eq.(??). If f = 3, as for the parabola available in the lab, Ω = 1.5 s−1, the radius of 

the tank is 0.50 m, then with g = 9.81 m s−2, we  find Ω
2

2

g
r2 ∼ 2. 9× 10−2m or  about  3 cm, a 

noticeable effect. 


