ElasticOl

Problem Solution

For the small strains involved in most elastic problems, the mathematics describing
stresses and strains are linear.  This means that the solution to a more complicated
problem can be found by breaking the problem into smaller, smpler pieces and adding
the solutions together. As an example, you can determine the relationship between the

bulk modulus and other elastic moduli such as Y oung's modulus E, the Lamé parameters
A and u (where u = G, the shear modulus), and Poisson'sratio v in the following way:

1) First consider the stresses and strains involved in uniaxial stress along the x, axis.
That is, consider the experiment used to define Y oung's modulus E: for o,, = ¢, and all
other o; =0, write each component of the strain tensor, first in terms of A and u, then

interms of E and v.

i) Next, consider uniaxial stress o, along the x, direction. Write each component of the
strain tensor, first in terms of Aand u, then in terms of E and v.

iii) Next, consider uniaxial stress ¢, along the x, direction. Write each component of
the strain tensor, first interms of Aand u, thenintermsof Eand v.

iv) Finaly, add these three solutions together to determine the total strains involved
when a stress o, is applied along each axis at the same time. From these relations

between stress and strain, determine the bulk modulus K, first in terms of Aand u, then
intermsof E and v.

Solution:

For an isotropic media we can write down the expression for the components of the stress
tensor as: 7; = Ag, §; +2ue; , where 4 and u are the Lame parameters,

and for the strain tensor: g, :i(rn _2;1%3%6”%)

I) Let'sconsider the stresses and strains involved for uniaxial stress along the x; axis:

0y, = 0, and o

i,j=11 -
The components of the strain tensor in terms of Aand u are:

u+A A

" @A+ 2u) Nd €= =~ 2u(34 +2u)

thenintermsof E and v:
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1 . 1 \%
en:EGo and since €, :e33°c_e11°c_EGo then €, =65 :_EGO

i,j#2,2 -
The components of the strain tensor in terms of Aand u:

i) Along the x, direction: o,, =0, and o,

U+ o and A

2 u(Br+2u)° 5= % 2u(31 +2u) °

then in terms of E and v:
ezz—_coand €1=83 == 0p
iii) Along the x, direction: o,, =0, and o, . 0
The components of the strain tensor in terms of Aand u:
__ Mt o adece - * &
* T uBA+2u) ° 0= = 2u(31 +2u) °

thenintermsof E and v:
1 \%
e33:E60 and €1=6x :_EGO

iv) Let'sadd these three solutions together and determine the total strainsinvolved when
astress o, is applied along each axis at the sametime: ¢; = 0, - J;
1-2v 1
QJ :TO-O' i :mo-o6”
From these relations between stress and strain we can determine the bulk modulus K :

KE—L:& intermsof Aand u
AV)V g,
and interms of E and v:
K—l+g __E
AT T 3o
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Problem Solution

The relationship between stress and strain for a simple isotropic elastic material is:
T, = A8, 6y +2ue;
(A and u are constants, the Lame parameters, and are called “moduli”)

It is sometimes useful to present g, rather than o, , as the independent variable. One way
of determining the equation for g, in terms of o, and o, is to first solve the equation
above for g, in terms of o, then substitute this value for g, and solve for ¢, .

First, determine the expression for ¢, in terms of . Then, write an equation equivalent
to the one above, but with g, on the left side and stresses on the right hand side. (The
constants multiplying the stresses are called “compliances”.)

Solution:

Let’s express o, explicitly:
T = Ty T T 733

and substitute stresses 7, 7,, 7,, interms of the strains using the relationship:

T, = Ae, 6; +2ue;. Then we get expression for the trace of stress tensor:
T =348y + 2“(611 T eyt e33) =38y + 218y,
which can be rewritten to the expression for the trace of the strain tensor (dilatation):
A Tk
“ T 3A+2u

Substituting the dilatation into the expression for the stress tensor, 7; = Ae,, §; +2ue;, we
rewrite it with respect to the strain tensor:

1 A
& =5 %~ Tkkalj
2u 2u+3A
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Problem Solution

Turcotte & Schubert, Problem 3-17 (See pages 119-120)
Determine the bending moment in the overburden above the idealized two-dimensional
laccolith as a function of x. Where is M a maximum? What is the value of Max?

Solution:

An idealized two-dimensional laccolith can L
be viewed as following:

H H H H H AVAY X
with an assumptions that its deflection is LKL
much smaller than its horizontal scale:

w<<L

The bending moment in the overburden above this idealized two-dimensional laccolith is
defined as:

d’w
M =-D :
dx?
o Eh®
where flexural rigidity: D = ——,
12(1-v?)
. _ q (., ¥, U (x)z (x)4
deflection of the plate: =——[ X' ——X"+—=|=w,[1-8 — | +16| —| |,
Plate: @(x) =545 (X 2" 16 )T AL L
with q as an external vertical force acting on the plate, and @, as the deflection at x=0:
g o A
(), =® =355

We take the double derivatives of the deflection and write the bending moment

expression as:
16w,D 2] ql? ?
M = =% 1—12(5) s 1—12(5) .
L L 24 L

Mathematically, an extreme (minimum or maximum) of a function can be found as the
place where its derivative with respect to x equals zero, that is where: M', =0. But we
have to calculate also the bending moment at the edges of the overburden (just in case if
it is greater than the mathematically found extremes).

The derivative of the bending moment is zero when x=0; there the bending moment is:
v _16@D q*
TP 24
The bending moment at the edges of the overburden (x=4./2) is:
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32,0 _ gl

L2 12

M i =—

which is twice as big as at the center.

Therefore, the maximum of the bending moment in the overburden above the idealized
two-dimensional laccolith is located at the edges: x=+./2.

320,.D gL
Itequalsto: M =— 0~ —_
q max L2 12
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Problem Solution

Problem 3-18, Turcotte & Schubert:

Calculate the fiber stress in the stratum overlying the two-dimensional laccolith as a
function of y (distance from the centerline of the layer) and x.

If dikes tend to form where tension is greatest in the base of the stratum forming the
roof of a laccolith, where would you expect dikes to occur for the two-dimensional
laccolith?

Solution:
The state of the fiber stress in extension

the stratum is shown
schematically in the picture:

zero stress lines

,Iﬂy

compression .
compression

Inflection point

extension

. , . E .
The fiber stress is related to the strain as: o, = 12 S where strain depends on both
-V

2

@ through the deflection of the laccolith, w.

coordinates, xand y: g,, = -y X

The deflection as a function of x is:

o< -5 el o{T) (i)
L T (P v e P - B T RS )
w(x) 24D(X 2" T16) 7 AL) L

3

where flexural rigidity: D = ———<
S P v

; g is an external vertical force acting on the plate,

_qu
384D

and @, is the deflection at x=0: o(X)|, = a,

x=0 =

We take the double derivatives of the deflection and write the strain as:
160, x )’ gL’ x

€ =Y E [1—12(L) ]_ y24D 1-12 3 .

Substituting expression for the flexural rigidity, we obtain the fiber stress in the
stratum overlying the two-dimensional laccolith as a function of y and x:
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_ae (%Y
G =55 Y1 12(L)]

If dikes tend to form where tension is greatest, let’s determine where the fiber stress is
maximal in the two-dimensional laccolith.

An extreme (minimum or maximum) of a function can be found as the place where its
derivative equals zero. Since in our model the horizontal dimension of the stratum has
finite length, we have to calculate also the stress at the edges.

The derivative of the fiber stress is zero at x=0; where the stress is:

_aLy
x=0,y=h/2 Z H !

here we assumed y=h/2.
The fiber stress at the edges of the stratum (x=+4./2) is:

__afLy
x=tli2y=h2 9 F .

which is twice as big as at the center.
Therefore, the maximum fiber stress in the two-dimensional laccolith is at its edges:

x=7/2 and it equals to:
2
__9(L

If the dikes tend to form where tension is greatest, we would expect them to occur in
the base of the stratum where it has a concave upwards shape.

O-XX

O-XX
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Problem 3-19, part b) only, Turcotte & Schubert. [Note that part a) of this problem
discusses only one of multiple maxima in the bending moment. There are other maxima.
You should identify the one with the largest bending stress.]

(a) Consider a lithospheric plate under a line load.

(b) Refraction studies show that the Moho is depressed about 10 km beneath the center
of the Hawaiian Islands. Assuming that this is the value of ¢, and that h = 34 km, E = 70
Gpa, v = 0.25, p -p, = 2300 kg/m’, and g = 10 m/s*, determine the maximum bending
stress in the lithosphere.

Solution:

. . . , . E
The bending stress in the lithosphere is related to the strain as: o,, = 126 where

2 &xx?
-V

2

@ through the deflection of the

strain depends on both coordinates, x and y: ¢, = -y i

plate, w.

As we derived in the class, the plate deflection under a line load is a function of x:

X . X X
o(x) = a)o(cos— +sin —) exp{— —} .
o o o

Therefore, the bending stress in the lithosphere is:
Oy = E ﬂ(sinl cosi)ex{ 1}
w =TT a o) o

To determine where the bending stress in the lithosphere reaches maxima in x-direction,

. — dJo. . :
we need to set its x-derivative equal to zero: WXX =0. Solving the last equation, we

. : . . : X T
obtain the x-coordinates where the bending stress is maximum: po iE :

Since x and the flexural parameter o« must be positive, we substitute back into the
equation for the stress only positive solution. Then the stress becomes:

Oy = = ﬂex z
xx_yl_vz 052 p 2 .

To calculate the numerical value, we use the definitions for the flexural parameter:

3
ot = 4—D and the flexural rigidity: D = En

(Pn—Pu)g

2) , Which gives:

12(1-v
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ot = Eh®
1-v*)(pn—Pu)9

We assume that the stress reaches maximum at y=+h/2 and substitute all last formulas
into the expression for the stress. Then the maximum bending stress in the lithosphere
becomes:

3 _
Oyl =0, exp{— %} % ~ 75 kbars.



