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Problem Solution 

For the small strains involved in most elastic problems, the mathematics describing 
stresses and strains are linear.  This means that the solution to a more complicated 
problem can be found by breaking the problem into smaller, simpler pieces and adding 
the solutions together.  As an example, you can determine the relationship between the 
bulk modulus and other elastic moduli such as Young's modulus E, the Lamé parameters 
λ and µ (where µ = G, the shear modulus), and Poisson's ratio ν in the following way: 

i) First consider the stresses and strains involved in uniaxial stress along the x1  axis. 
That is, consider the experiment used to define Young's modulus E:  for σ11 = σ and all0 

other σ ij = 0 , write each component of the strain tensor, first in terms of λ and µ , then 

in terms of E and ν . 

ii)  Next, consider uniaxial stress σ0 along the x2  direction.  Write each component of the 

strain tensor, first in terms of λ and µ , then in terms of E and ν . 

iii)  Next, consider uniaxial stress σ0 along the x3 direction.  Write each component of 

the strain tensor, first in terms of λ and µ , then in terms of E and ν . 

iv)  Finally, add these three solutions together to determine the total strains involved 
when a stress σ0 is applied along each axis at the same time.  From these relations 

between stress and strain, determine the bulk modulus K, first in terms of λ and µ , then 

in terms of E and ν . 

Solution: 

For an isotropic media we can write down the expression for the components of the stress 
tensor as: τij = λ  δ + 2µeij , where λ and µ are the Lame parameters,ekk ij 

1 ⎛ λ ⎞ 
and for the strain tensor: eij = ⎜τ ij − 2µ  λ

δ τ kk ⎟ 
+ 3 ij2µ ⎝ ⎠

i) Let's consider the stresses and strains involved for uniaxial stress along the x1  axis: 

= 0σ11 = σ0 and σij i j≠ ,, 1 1  

The components of the strain tensor in terms of λ and µ are: 
+ 

e
µ λ  λ 

11 = (3 
σ0µ λ + 2µ) σ0 and e22 = e33 = − 

2µ λ + 2µ)(3 

then in terms of E and ν : 
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e11 = 
E 0 

1 σ and since e22 = e33 e11∝ −  
E 0 

1
∝ −  σ then e22 = e33 =

E 0−
ν

σ 

ii) Along the x2  direction: σ22 σ0 =  and σ ij i j, ≠ ,2 2  
= 0 

The components of the strain tensor in terms of λ and µ : 

e22 = ( ) 03 2 

+ 
+ 

µ λ  
µ λ  µ  

σ  and e11 = e33 = − (2 3 + 
λ 

µ λ  ) 02µ 
σ 

then in terms of E and ν : 

e22 = 
E 0 

1 σ and e11 = e33 =
E 0− ν σ 

iii) Along the x3 direction: σ33 σ0 =  and σ ij = 0 
i j≠ ,, 3 3  

The components of the strain tensor in terms of λ and µ : 

e
+ λ 

33 = (3 

µ λ  
e11 = e22 = − 

2µ λ  µ)σ0µ λ + 2µ)σ0 and (3 + 2 

then in terms of E and ν : 
1 ν

e33 = σ0 and e11 = e22 = − σ0E E 

iv) Let's add these three solutions together and determine the total strains involved when 
a stress σ0 is applied along each axis at the same time: σ  σ δ  = ⋅ ij 0 ij 

1 2ν 1− 
E 0 ⋅ = σ δ ij ⋅eij = σ δ ij 3λ  µ  0+ 2 

From these relations between stress and strain we can determine the bulk modulus K : 

K ≡ −  P = σ0  in terms of λ and µ
∆V V  ekk 

and in terms of E and ν : 
2 E 

K = + µ = 
3(1 − 2ν)λ 

3 
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Problem Solution 

τ 
The relationship between stress and strain for a simple isotropic elastic material is: 

ij = λ  δ  ij + 2µeijekk 

(λ and µ  are constants, the Lame parameters, and are called “moduli”) 

It is sometimes useful to present ε  rather than σ ij
 , as the independent variable.  One way

ij

of determining the equation for ε  in terms of σ ij
 and  is to first solve the equation 

ij σ kk

above for ε  in terms of σ kk
, then substitute this value for ε  and solve for ε .

kk kk ij

First, determine the expression for εkk
 in terms of σ .  Then, write an equation equivalent 

kk

to the one above, but with εij 
on the left side and stresses on the right hand side.  (The 

constants multiplying the stresses are called “compliances”.) 

Solution: 

τ 
Let’s express σ kk

 explicitly:


kk = τ11 + τ22 + τ
33 

and substitute stresses τ11 
in terms of the strains using the relationship:τ22 τ33

τij = λ  δ  ij + 2µeij . Then we get expression for the trace of stress tensor: 

τ 
ekk


kk = 3λekk + 2µ(e + e22 + e33 ) = 3λekk + 2µe
11 kk , 

which can be rewritten to the expression for the trace of the strain tensor (dilatation): 
τkk .ekk = 

3λ + 2µ 

Substituting the dilatation into the expression for the stress tensor, τij = λ  δ + 2µeij , we  ekk ij 

rewrite it with respect to the strain tensor: 
1 ⎛ λ ⎞ 

⎜τ ij − 2µ + 3λ
τ δij ⎟kk eij = 

2µ ⎝ ⎠

1 



Elastic03 

Problem Solution 

Turcotte & Schubert, Problem 3-17 (See pages 119-120)

Determine the bending moment in the overburden above the idealized two-dimensional

laccolith as a function of x. Where is M a maximum? What is the value of Mmax?


Solution: 

An idealized two-dimensional laccolith can 

ω magma

L 
be viewed as following: 

with an assumptions that its deflection is 
much smaller than its horizontal scale: x 

x = 0ω << L 

The bending moment in the overburden above this idealized two-dimensional laccolith is 
defined as: 

2d ω 
M = −D 

dx 2 , 

Eh3 

where flexural rigidity: D = 2
,

12(1 − ν ) 
L2 4	 4 

4	 2 L ⎞ ⎛ ⎛ x ⎞ 
2 

⎛ x ⎞ ⎞ 
deflection of the plate: ω( ) = 

q ⎛
⎜ x − x + ⎟ = ω ⎜1 − 8⎝⎜ ⎠⎟ + 16⎝⎜ ⎟ ,x 

24D ⎝ 2 16⎠ 0 ⎝ L L⎠⎟ 
⎠ 

with q as an external vertical force acting on the plate, and ω0  as the deflection at x=0: 

qL4 

ω( )x = ω0 = . 
x=0 384D 

We take the double derivatives of the deflection and write the bending moment 
expression as: 

2	 2 

M = 
16	ω0 D ⎜

⎛ 
1 − 12

⎛
⎝⎜ 

x ⎞ ⎟
⎞

= 
qL2 

⎜
⎛ 
1 − 12⎝⎜

⎛ x ⎞ ⎟
⎞ 

. 
L2 ⎝ L⎠⎟ 

⎠ 24 ⎝ L⎠⎟ 
⎠ 

Mathematically, an extreme (minimum or maximum) of a function can be found as the 
place where its derivative with respect to x equals zero, that is where: M ' = 0 . But we x 

have to calculate also the bending moment at the edges of the overburden (just in case if 
it is greater than the mathematically found extremes). 

The derivative of the bending moment is zero when x=0; there the bending moment is: 
216ω0 D 

= 
qL

=Mx=0 L2 24 
The bending moment at the edges of the overburden (x=±L/2) is: 
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32ω0 D qL2 

Mx=± L/2 = −  
L2 = −  

12 
, 

which is twice as big as at the center. 

Therefore, the maximum of the bending moment in the overburden above the idealized 
two-dimensional laccolith is located at the edges: x=±L/2. 

32ω0 D qL2 

It equals to: M = −  = −  max L2 12 
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Problem Solution 

Problem 3-18, Turcotte & Schubert: 

Calculate the fiber stress in the stratum overlying the two-dimensional laccolith as a 
function of y (distance from the centerline of the layer) and x. 

If dikes tend to form where tension is greatest in the base of the stratum forming the 
roof of a laccolith, where would you expect dikes to occur for the two-dimensional 
laccolith? 

Solution: 

The state of the fiber stress in extension 

e n 

I t 

y 

xtensio

compression 
compression 

zero stress lines 

nflection poin

the stratum is shown 
schematically in the picture: 

E 
The fiber stress is related to the strain as: σ xx ε

ν 2 xx 

through the deflection of the laccolith, ω. 

, where strain depends on both =

1 −


ω2 

2

d 
coordinates, x and y:ε = −  yxx dx 

The deflection as a function of x is: 
2 4⎛
 ⎞
L4L2⎛


ω
⎞ 

0 

⎛
⎝1 8⎜ ⎞

⎠
x 

⎟ +
 ⎛
⎝16⎜ ⎞

⎠
x 

⎟
q 

24D 
xω( ) =
 4 2 ⎜

⎝

⎟
⎠ 

− −⎜
⎝

⎟
⎠

+ =
x x ,
2 16 L L 

Eh3 

where flexural rigidity: ; q is an external vertical force acting on the plate, D =
 (12 1 

is the deflection at x=0: 

)ν− 2 

0 
=ω= 0 

qL4 

384D

.
xω( )and ω0 x= 

We take the double derivatives of the deflection and write the strain as: 

1
−
 ⎛
⎝12⎜ 

x 

L

⎞
⎠

2 

⎟ 1 −
 ⎛
⎝12⎜ 

x 

L

⎞
⎠

2 

⎟ 
⎛
 ⎞
 ⎛
 ⎞ 

= y 
qL2 

24
D

=εxx 

ω16 0y
L2 ⎜

⎝

⎟
⎠


⎜
⎝


⎟
⎠


.


Substituting expression for the flexural rigidity, we obtain the fiber stress in the 
stratum overlying the two-dimensional laccolith as a function of y and x: 
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2⎛
 ⎞
qL2 

1−
12⎜⎛⎝
x 

⎟⎞⎠
⎜
⎝ 

⎟
⎠
xx =σ

2h3 y 
L 

If dikes tend to form where tension is greatest, let’s determine where the fiber stress is 
maximal in the two-dimensional laccolith. 
An extreme (minimum or maximum) of a function can be found as the place where its 
derivative equals zero.  Since in our model the horizontal dimension of the stratum has 
finite length, we have to calculate also the stress at the edges. 

The derivative of the fiber stress is zero at x=0; where the stress is: 
2 

σ xx 0= =x y, 

q L⎛ 
⎝⎜

⎞ 
⎠⎟= 

4h 2/ h 
here we assumed y=h/2. 
The fiber stress at the edges of the stratum (x=±L/2) is: 

,


2⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

q L
⎜ ⎟xx y  h  = 

which is twice as big as at the center.

Therefore, the maximum fiber stress in the two-dimensional laccolith is at its edges:


σ

x=±L/2 and it equals to: 

σ

q L
⎜ ⎟xx 

= − 
 . 
=± 2/2 /2L hx , 

2 

= − 
 . 
2 hmax 

If the dikes tend to form where tension is greatest, we would expect them to occur in 
the base of the stratum where it has a concave upwards shape. 
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Problem Solution 

Problem 3-19, part b) only, Turcotte & Schubert. [Note that part a) of this problem 
discusses only one of multiple maxima in the bending moment. There are other maxima. 
You should identify the one with the largest bending stress.] 
(a) Consider a lithospheric plate under a line load. 
(b) Refraction studies show that the Moho is depressed about 10 km beneath the center 
of the Hawaiian Islands. Assuming that this is the value of ω o and that h = 34 km, E = 70 

= 2300 kg/m3, and g = 10 m/s2, determine the maximum bending Gpa, ν = 0.25, ρ
 -m wρ 

ε 

stress in the lithosphere. 

Solution: 
E 

2 xxThe bending stress in the lithosphere is related to the strain as: σ xx , where =

ν1 − 

ω2 

2

d 
strain depends on both coordinates, x and y:ε = −  yxx  through the deflection of the 

dx 
plate, ω.


As we derived in the class, the plate deflection under a line load is a function of x: 
⎛⎜⎝


⎞⎟⎠
exp 
⎧
⎨
⎩


⎫
⎬
⎭


.

x x x 

α

ω( )x ω 0 

Therefore, the bending stress in the lithosphere is: 

−
sin += cos
α
 α


⎛⎜⎝
ω 

α 
2 0 

2 sin 
x 

α

−
 ⎞⎟⎠


⎧
⎨
⎩


−
 ⎫
⎬
⎭


.

E x x 

α
σ = −xx y cos exp

ν1 2 α− 

To determine where the bending stress in the lithosphere reaches maxima in x-direction, 
∂σ xxwe need to set its x-derivative equal to zero: 0 .   Solving the last equation, we = 
∂x 

obtain the x-coordinates where the bending stress is maximum: 
x 

α

= ± 


π

. 

2 

ω 

Since x and the flexural parameter α must be positive, we substitute back into the 
equation for the stress only positive solution. Then the stress becomes: 

2 0 π
⎧
⎨
⎩ 

⎫
⎬
⎭


E

=σ xx − 

α 2 expy .

ν1 2−
 2 

To calculate the numerical value, we use the definitions for the flexural parameter: 
4D Eh3 

ρρ( =α 
m w

 and the flexural rigidity: )
, which gives:(D = 
12 1)− g ν− 2 

1 
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Eh3 
4α = .

23(1 − ν )(ρm − ρ )gw 

We assume that the stress reaches maximum at y=±h/2 and substitute all last formulas 
into the expression for the stress.  Then the maximum bending stress in the lithosphere 
becomes: 

⎧ π ⎫ 3Eg(ρ − ρw )m = ω exp⎨
⎩

− 
2 

⎬
⎭ h(1 − ν ) ≈ 7.5 kbars .σ xx 0 2max 
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