Problem Set #2 1

Problem 1

Write out symbolically the relationship between the traction vector acting
on a surface, T;, the normal vector describing the orientation of that surface,
n;, and the local stress tensor, o;;, using:

a) vector-matrix notation

b) the summation symbol ¥

c¢) Einstein summation notation

d) full explicit evaluation writing out each term

Solution
a) (NOTE: Since symbol notation is not convenient to write in TEX T will
use T, 1 and o for a vector, unit length vector and tensor respectively.)

T =c'n

and since o' = o, T = oh.
b)
3
T% = zajiﬁj; 1= 1,2,3
i=1
where I retained the hat on the unit length vector, this is optional but I find
it to be convenient.

c)

T; = 0jin;
where it is assumed that you sum over the dummy index j, and again it is
assumed that ¢ =1, 2, 3.
d)

T1 = Jllﬁl + 0'217%2 + 0'3173/3

Tz = 0'127AL1 + 0'22'fl2 + 0'32”fl3

T3 = 01371 + 093N + 03373
note that the order of the ¢ or j are not so important because the stress

tensor is symmetric, but in general it is important to keep the ¢’s and j’s
straight.
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Problem 2

[Modified from Turcotte and Schubert, 2-12 (2-24 in version 2)]. The
state of stress at a point on a fault plane is o,y = 150 MPa, 0,, = 200 MPa,
and o,y = 0 MPa. What is the normal traction and shear traction on the
fault plane if the fault strikes N-S and dips 35 degrees to the west? Do you
expect the fault to slip, given your expectation of the value of the coefficient
of friction?

Solution

Following the convention that compression is negative (BEWARE, T&S
uses the opposite convention! I will use negative for compression.) the stress

tensor is:
-200 0
Oij = ( 0 _150 ) MPa

This problem can be solved in a couple of ways. With Mohr’s Circles,
with rotation matrices and by using the fomulas learned in class. The Mohr’s
circle is the simplest so I will present that first.

Mohr’s Circle Solution

Normal and shear stress are given by Mohr’s circle construction by

On = 0.+ 0, cos(26)

T = 0, sin(20)
Oc = Tyy ; Tz _ _1502_ 2OOMPa = —175MPa
Oyy — Ozz _ —150+ 200
2 2

MPa = 25MPa




Problem Set #2 3

-200 -175 o -150 |0, (MPa)

For 6 = 35° we find
on = —175 + 25 cos(70)MPa = —166.4MPa

7 = 25sin(70)MPa = 23.5MPa

Tensor Rotation Solution

If you had wanted to solve this by rotation, simply rotate the stress tensor
(0" = aoa®) by 35° and then o,, is the normal stress (traction) and o,
is the shear traction. Try it!

The Third Path

First find the traction acting on the fault plane:

i 200 MPa 0 sin35° | [ —114.7
1i = ouhy = ( 0 -150 MPa ) ( — c0s 35° ) - ( 122.9 >Mpa

the normal stress is then found by
on, = Tin; = —114.7 MPa sin 35° — 122.9 MPa cos 35° = —166.4 MPa.

The shear stress is found by

| —11a7 —166.4 sin 35°
7=[Ti = on- il = ‘( 122.9 ) MPa — ( 166.4 cos 35° ) MPa‘

_|( —19.3 B e Ty
= ‘( 134 )MPa‘ = /(~19.3)2 + (~13.4)2MPa = 23.5 MPa

The Question of Slipping
For movement to have occurred on the fault we need to satisfy 7 = uo,,
so we can calculate the critical coefficient of friction, ., needed for slipping

at these stresses 93 5
T ;
c=—=——=0.14
He = G = 166.4
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since typical coefficient of friction for rock (0.6 — 0.85) is much greater than
the critical coefficient of friction, it is concluded that the fault will not slip.

Alternatively, for a coefficient of friction of 0.6 (typical for rock) and the
normal stress determined above, the minimum shear traction, 7,, needed to
induce slipping on the fault is

Tm = (0.6) x (166.4)MPa = 99.8MPa

and since 7, > 7 the shear stress is not great enough to induce slipping on
the fault.

Problem 3

For practice in Einstein summation notation, expand the following expres-
sions using the Kronecker delta, simplify and evaluate the numerical values,
where possible (explain what you are doing):

a) 0

b) 6,6
c) 00,
d) 0ii6;k0k
e) 0;;Ai

Solution
1 ifi=y
0 ifi#y
implies a summation over the degrees of freedom, in this problem we will use
three degrees of freedom in a three-dimension space.

a) i

The summation is over the index 1,

To refresh everyone’s memory 6;; = and repeated indices

3
0= 0 =01 +0pn+03=1+1+1=3
i=1
b) 8;;0:
The summation is over both ¢ and 7,

3 3 3
0ij0ij = Z Z 0ij0ij = Z 0i10:1 + 0i20;0 + di30:3
i—1j—1 i1

and expanding ¢ = 1 fully 11011 + 912012+ 913013 = 1+0+0 = 1, and showing
only the non-zero terms in the full expansion

0ij0ij = 011011 + 022029 + 033033 =1 +14+1=3
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c) 0ij0jk
The summation is over j and we have 3 x 3 equations for 1 = 1,2, 3 and
k=1,23.
3
040k = Z 050k = 0101k + G200k + 43034
j=1
and note that the only non-zero terms will ¢ = k, for example for 4 = 1 and

k =1 the sum will be 6;;0;; +0-0+0-0=1 and for z = 1 and k£ = 2 the
sum will be 1-04+0-140-0 = 0. Therefore we can simplify the above as

050k = Ok

and evaluating the 9 equations (i = 1,2,3 and k£ = 1, 2, 3) and displaying the
answers as a matrix we have

k=1 k=2 k=3

o O =
o = O
_ O O

e E=IEk=1l]

0
1
0

Il

d) 04010k

This is similar to part c, but here the summation is over j and k where
there are again 9 equations for 7 and [ equal to 1, 2 and 3. We can reduce
this by applying the relation that we discovered in part c twice

5ij5jk5kl = 5ij5jl = 5il-
e) 5z]Azk

Here we sum over ¢ and again we will have 9 equations as in the previous
two problems.

3
5iinlc = Z 5ijA'ik = 51]'14119 + 62jA2k + 631'143/0
i=1

And as an example, the equation when 7 =1 and k£ = 2 the sum reduces to
011412 + 021 Agp + 031430 = 1- Ao+ 0- Ay +0- Agp = Ajp = Ay,

You can easily verify that this holds in general by expanding all nine equa-
tions out. We can evaluate and display the nine equations again as a matrix

k=1 k=2 k=3

. A A A
0ijAik = Ajx = J= Ll An Az | A = | Ay A Ay
J=2| An | An | Ax An Awm Asm

J=3| As | Ap | As
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Problem 4

For the stress tensor

Uij =

O ==
e
o OO

a) Find the principal stresses and directions. (Use a right-handed coordinate
system)

b) Compare the three Invariants for the original stress tensor and the prin-
cipal stress tensor.

c) Find the deviatoric stress tensor ije”
d) Find the principal stresses and directions of the deviatoric stress tensor.

Find the Invariants of the deviatoric stress tensor.

e) What are the relations of the principal stresses, directions, shears, etc.=
for these two tensors (the complete and deviatoric tensors investigated
above)? Can you say anything in general about these relations for an
arbitrary stress tensor and its deviator?

f) Construct Mohr’s circle for o;;.

g) Construct Mohr’s circle for o,

h) What is the relation between the maximum shear for the two tensors?

Solution

a) Finding the principal stresses and directions is done in the same way
as diagonalizing a matrix or finding the principal coordinate system (aka
the eigenbasis) — in fact these are all the same problem. In essence, we
want to find the right-handed coordinate system, expressed in terms of the
given coordinate system, in which only normal stresses act along each of the
basis vectors. There is a lot of linear algebra hidden in here, but I will just
state that given any stress tensor, you can find a pricipal coordinate system.
Mathematically, we can express the above statement like this:

0ij - Ny = A (1)

which just says that the traction on the n; plane (remember we define our
planes by use of the vector normal to it) is along the normal vector (i.e. the
stress is normal to the plane). We rewrite equation 1 as

(035 — A+ 0y5) -7y =0 (2)
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and the \’s and n;’s for which this is true are the eigenvalues (principal
stresses) and the eigenvectors (principal coordinate systems), respectively.
There will be three eigenvalues and associated eigenvecors which will solve
equation 2, not neccisarily unique. Two further constraints are placed on the
n;’s, they must be normalized (unit length) and they must for a right-handed
coordinate system. We can express these two conditions as

normalized: ;| =7, -n; =/nd+n3+nj =1
right-handedness: n; = n; X 7y,

We proceed by finding the eigenvalues (principal stresses), which are the
A’s which solve equation 2, we denote them in a matrix as:

(o] 0 0
0 (o) 0
0 0 03

and are found by solving for the roots of the characteristic polynomial
det (Uij — /\(513) =0

which can be simplified by use of the Invariants or solved directly. I will
solve this directly, and you can refer to your notes for how the characteristic
polynomial simplifies with the Invariants.

1-)) 1 0
L (1=)) 0 [=@=-N[A=1=1]=2-N)A-2r=0
0 0 (2-X

The solutions to this characteristic polynomial are A = 2, 2 and 0, these are
the principal stresses. Following the convention o1 > o9 > 03, 07 = 09 = 2
and o3 = 0.

We then find the associated eigenvectors (principal directions), by solving
for a n; for each A in equation 2. For simplicity, I am going to call the
components of the eigenvectors z;.

1-0 1 0 1 0
For A =0, 1 1-0 O |l xz2 | =10
0 0 20 x3 0

T+ Ty = 0 o= 5

25 = 0 } = Ty = —S

r3 = 0

where s is an undetermined variable. We now enforce the normalization

constraint
\/32 +(=5)2402=V2s2 =125=1
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SO § = % (note since this equation involves squaring, the sign is ambiguous,
so we just choose one, in this case positive), and the eigenvector associated
with 03 =0 is

We then find the eigenvectors associated with o; and o5 in the same way:

1-2 1 0 T 0
For \ = 2, 1 1-2 0 |- |al=]0
0 0 2-2 T3 0
Tr1 — Ty = 0 =
¥ 0.x = 0}:> v
r3 = t

where s and t are undetermined variables. This gives us two vectors:

0 S
ﬁg-l) =10 and ﬁ§-2) =1 s
t 0

. . . ~(2
We now enforce the normalization constraint on ng )

V2 +s24+02=V2s2=V2s=1

SO § = % (again note the sign ambiguity, we choose positive), and the
eigenvector associated with o, = 2 is

NONE S

J
V2
Now, the normalization constraint on ﬁ;l) is trivial, and it tells us that
t = +1, so to resolve the ambiguity we now utalize the right-handedness
constraint:
1 J
A0 = (A2 xa®) = L |11

ﬂ‘ V2

_ =
S O IO
I
>
T
>
(e
_|_
>
~~
|
[a—
|
—_
~—

-1
so we find, subject to the normalization constraint above,

0
Al =1 0
-1
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We can then put this all together as

N 20 0 1 0 1 1
O_g;mmpal — 02 0 and ﬁj(n) — 7 . 0 1 -1 s
00 0 2\ V20 0

where the first matrix is the principal stress tensor, and the columns of
the second matrix define the principal frame, given in terms of the original
coordinate system. Note that the final solution to this problem is non-unique
in terms of the signs of the eigenvectors, which is to say it is non-unique in
terms of 7 rotations about the axes.

b)
For the origninal stress tensor:

Uij =

O ==
O = =
N OO

1 1
I, = 5.(01-]-0@-]- — 0404j) = 5-[031 + 207, + 05y + 035 — (011 + 090 + 033)2} =4

13 = ‘Jij’ = det (Uij) = 2(1 — 1) =0

For the principal stress tensor:

Uij =

S O N
o NN O
o O O

L, = - (0j0ij — 040j;) = —011092 = —4

DN | —

13 = |0ij| = det (O’Z‘j) =0

The Invariants of the original stress tensor and the principal stress tensor
are the same — they are invariant under coordinate system rotation.
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)

The deviatoric stress tensor is found by o = ¢;; — %i - §;;, and is

ij 3
110 L (400 -1/3 1 0
ofr=1110 —z|040 )= 1 -3 0
00 2 00 4 0 0 2/3

d) Following the proceedure in part a, we find the eigenvalues (principal
stresses) and the eigenvectors (principal coordinates) as

- 2/3 0 0 1 0 1 1
Ug;lnapal — 0 2/3 0 and ﬁj(")T . 0 1 -1 ,
0 0 —4/3 2 \-v2 0 o0
The Invariants are
Ife =0
4
Idev —
> 3
—16
Idev —
3 27
e) The definition of the deviatoric stress tensor is aflje” = 0y — TEE - 0y,

which simply says that the deviatoric stress tensor is the stress tensor minus
the average of the normal stresses. So we decrease the principal stresses by
the same amount. Since the shear stresses stay the same, while the normal
stresses all decrease by the same amount, the principal coordinates stay the
same.

The relationship between the Invariants of the stress tensor and its devi-
ator can be found by (keep track of the indecies):

Tk Ok
I = gl = '—751'202'2‘—73 3=0

i Y

2

1 1 1 1 .

note that (5“ = 37 5ij6ij = 3, and oijéij = Oy, and expanding the multlphed
terms

1
dev dev _2 dev _dev
I5°Y = [al-j 03— Oii 04 }

1 2 3
=5 [Uz’jaij ~ 3 ORkjj + SOkkOkk — 0405 + 2044055 — Jkkzaj]}

9

1 -1 6 2
ZZPWﬁ_wﬁﬁ+%w”<3+3_3ﬂ
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1 12
= 5 (0303 = 000j;) + 5 3 Okk0j
1
=LY =T+ o0
For I¢¢* T will derive this for the principal coordinate system, which no
loss of generality, setting p = %lakk = %111:
14 = det (Ufje”) = 0?05 05" = (011 + ) (022 + p) (033 + D)

= 0110922033 + P {011022 + 011033 + 092033 + p (011 + 022 + 033) ‘Hﬂ

-1 —1_\?
=I3+p [—12 - 3p° —|—p2} =1, - (311) (L) —2 (311)

= 13 =13 + ;1112 + 227}}’
f) Mohr’s circle is given by
op = 0.+ 0, cos 20
T = 0, sin 20
where 0, = 25%2 0, = % and oy 2 are the principal stresses (o7 > 09).

For o;;
j
o9 =0, o1=2

which gives
o, =0, = 1.

The plot is given below.
g) For ofe
—4 2
=g Ty
which gives
-1
o, =1and o, = —.

The plot of the Mohr’s circle for the full stress tensor (o;;) and its deviatoric

component (ije”, labelled with a superscript d in the plot) is below.
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/3 od 0 2/3 o, 2

h) The maximum shear stress occurs when sin 20 = 0, which gives 20 =
(This is also apparent from examining the plot of Mohr’s circle.) For 20 = 7,
T = 0, is the maximum that the shear stress can be. Since o, = 1 for the
two tensors (o;; and ije“) it follows that the maximum shear stress is the
same for both of the tensors.

EINIE



