Problem Set #1 1

Problem 1

Turcotte & Schubert 2-8 (pg. 80), 2-10 in version 2

Consider a rectangular block of rock with height of 1 meter and horizontal
dimensions of 2 meters. The density of the rock in 2.75 Mg/m3. If the
coefficient of friction is 0.8, what force is required to slide the rock over a
horizontal surface?

Solution

Fg

The given quantities are, where g is gravitational acceleration:
p = 2.75Mg/m* = 2750kg/m*
h=10m [ =2.0m
uw=0.8
g = 9.80m/s’

We first calculate the shear traction required to move the block, given the

normal traction due to gravity, by:
density x volume X ¢ ﬁg pgllh
area A Il
2750-9.81-2-2-1
T=038 20 928 5 kg/s-m? = 2.16 x 10*N/m?
And the force is found by multiplying the shear traction by the area it is
acting over (the bottom):

F=r-1-1=(216x 10'N/m?) x (2-2m?) = 8.63 x 10'N

T=[U0, =/
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Problem 2

Consider a rock mass of density p and thickness h resting on an inclined
plane, with the dip angle of the plane # shown in the figure. The plane is
just steep enough that frictional sliding continues after it begins.

a) Calculate the relation between the coefficient of friction f and 6.

b) Give the components of the normal vector to the plane, 7, in terms of 6.

x3

v

x2

x1

Solution
a) A free body diagram of the forces in this problem is:

First calculate the forces and tractions, where g is the acceleration due
to gravity, and V = h -/ - w is volume (w is width in and out of the page):

—

Fy = pVg = phlwg
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F, F, cosf
oy = 0= 79 = phg cos 0
lw lw
F,  F,siné
= —t = gSln :phgsm@
lw lw

And since the block started sliding we know that

7 _ phgsinf  sinf

T=fon=f= On phgcosf  cos@

£(6) = tan
b)

V' N
X3 n

N
L

X2

The normal vector to the plane, n, in terms of 0, is
n = (0) é; + (sinf) é; + (cos ) é;
or
n = (0,sin 6, cos 6)

Note that it is required for a normal vector to be unit length.
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Problem 3

It is a good approximation in many geodynamical situations that varia-
tions in topography are compensated isostatically. That is, above the depth
of compensation, the weight of the material in any column is a constant.
The purpose of this problem is to determine whether isostatic compensation
and a state of lithostatic stress are compatible. As a specific example, we
will consider the simplified model of a mid-oceanic ridge shown in the figure.
Assume that the lithosphere has a uniform density, p; = 3300 kg/m?, which
is slightly greater than that of the underlying asthenosphere, which has den-
sity p, = 3250 kg/m®. Assume that water has a density p, = 1000 kg/m?>.
The lithosphere has zero thickness under the ridge crest, and thickens as it
cools to a constant thickness (say 135 k) far from the ridge. As a result of
isostasy, the ridge is at an elevation which is higher that the ocean basin.

a) What is the elevation of the ridge if it is in isostatic equilibrium?

b) Assuming that the state of stress is lithostatic at both places, make a
graph of the horizontal normal stress, o,,, as a function of depth be-
neath both the ridge crest (point R) and the abyssal plain (point P).

c) Fy, the horizontal force per unit length (into the page) acting on the
lithosphere, can be determined by integrating o,, over the thickness of
the lithosphere. For this problem, with constant densities, this inte-
gration is easy to do graphically. Consider a free body diagram of the
lithosphere made by drawing a box with edges beneath points R and
P. Determine the net horizontal force per unit length acting on the
lithosphere if the assumption of lithostatic stress applies.

d) In order that there not be a net force acting on the lithosphere, the
assumption of lithostatic stress must be modified. Calculate the mag-
nitude of the average non-lithostatic stress, Aoy, acting over the 135
km thickness of the lithosphere, required to balance the forces on the
lithosphere.

e) How does the magnitude of Ao,, compare to the average value of the
lithostatic stress o4

f) If the departure from lithostatic stress, Ao, occurs in the old lithosphere,
is it extensional of compressional? What if it occurs at the ridge?



Problem Set #1 2

Solution
Diagram not to scale.

sea level
d
y" 77777}
e
D
depth of compensation 1 iy

» = 1000kg/m?, p; = 3300kg/m*, p, = 3250kg/m?>

d = 2.5km, D = 135km

a) For isostasy the weight of column R must equal the weight of column
P above the depth of compensation, which is the depth below which the
material in the two columns is the same.

wr=d-0A-p,-g+(e+D)-0A-p,-g

wp=(d+e)-6A-py-g+D-6A-p-g

where we assume that the cross sectional area of the columns, A, is small,
thus the lithosphere has thinned to zero in the column along the ridge. Since
wp = wg we can combine equations and solve for the unknown, e:

L= Pa _ 5 3300 — 3250
Po— P 3250 — 1000

e=D km = 3.0km

b) The equation for pressure, o,,, at depth y with pressure p; at d =0
is 0yy =po+ ¢ -y (which is just an equation for a line), and since we have
lithostatic stress we know that o,, = oy,. Setting depth d below sea level to
y = 0, so that py = dp,g, we can construct equations for o,, under the ridge
(point R) and the plain (point P):

ol (y) =y pag + d pug, 0 <y < (e+ D)
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P (y) = Y Pwg + d pug 0<y<e
ypg+(d+e)pug—epg e<y<(e+D)

Where you need to find the intercept of the bottom equation from a two
point line formula. A plot of these curves is (not to scale):
dp

w GXX = ny

'
v

D
y

v

c¢) The net force per unit length will be the area between the two curves
in the above graph. Note that this is force per unit length because when
we integrate a stress (%) over depth we result in a force per length since we
essentially remove one dimension from the area. To solve this analytically
we integrate the functions found above:
D D+e
F, = &: ; +eafwdy—/0 ' me

D+e € D+e
sz/o [dpw+ypa]gdy—/0 [dpw+ypw]gdy—/e [(d+e)pw—e pity pilg dy

This is relatively straight forward to solve, and after some calculus and alge-
bra we get:
Fyp="2(D+¢)%g - 2 D% — P(c* + 2eD)g
2 2 2

Before evaluating this notice that with these functions F,, can be also found
by geometry — find the area under the R curve, and subtract the area under
the P curve. Removing the rectangle common to both area, and rotating the
axes 90° we can visualize the geometry as
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pDg

A2 pweg
| D+e | e D

where we can find the resultant force per unit area directly by taking the
difference between the areas

F,=B—-A; — A, — A,
= F,="(D+e)’g— %D2g— %(624-261))‘9

which is the same result as obtained with calculus (which is a good check on
the work). Plugging in numbers and calculating we find

F, = 4.6 x 10"°N/m

d) The magnitude of the average non-lithostatic stress is given as the
force per unit width divided by the length that the force is acting over (ie.
the force per unit area).

F, 4.6 x10"N/m
D 135 x 103m

ACyy = = 3.41 x 10"Pa = 34.1MPa

e) Since stress increases lineraly with depth, the average value of the
lithostatic stress is the average of the minimum and maximum values. The
magnitude of o, at the top of the oceanic lithosphere at point P is

omit = (d + €)pug = ([2.5 + 3.0] x 10°m)(1000kg/m?)(9.81m/s*) = 54.0MPa

The magnitude of o,, at the top of the oceanic lithosphere at point P is

o — g™ D g = 5.4x10"Pa+(135x10%m)(3300kg/m?)(9.81m/s?) = 4.42GPa

vy vy
and since oy, = 04, (for lithostatic stress) the average is
omax _ mih

Ops = W _ 5 ¥W_ — 2.2GPa.
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Quantitatively

Aoy, B 34.1MPa B
( ) x 100 = (2.2 X 103MPa) x 100 = 1.6%

wa

Which is very small, and might be considered negligable.

f) All of the material from the ridge to the abyssal plain will tend
to “slide” away from the ridge under its own weight, therefore, the non-
lithostatic stress in the lithosphere at point P will be compressional. Alter-
natively, if the lithosphere is “sliding” away from the ridge, the non-lithostatic
stress at point R will be tensional.



