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1 Scaling laws for rivers and runoff 

1.1 Weathering and runoff 

Over the long term (105–109 yr), the slow processes of the rock cycle dominate 
the carbon cycle. 

We have already discussed volcanism as the long-term source of CO2, and 
burial as the long-term sink. 

Prior to burial, rocks are chemically weathered (e.g., leached). Dissolved 
carbon then becomes part of groundwater and river flows, the oceans, and— 
ultimately—sedimentary rocks. 

Thus weathering may be thought of as the initiation of the burial sink. 

With respect to the carbon cycle, the most important of the chemical weath­
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ering reactions reads schematically as follows [1–3]: 

CaSiO3 + CO2 � CaCO3 + SiO2. 

A similar reaction may be written by substituting Mg for Ca. 

Left-to-right, such reactions represent the uptake of CO2 from the atmo­
sphere, its transformation to HCO− during weathering of silicate minerals, 3 
and its eventual precipitation and burial in the oceans as carbonate minerals. 

Right-to-left, the reaction represents metamorphism and magmatism and the 
subsequent transfer of CO2 back to the atmosphere and oceans by volcanism 
and related processes. 

In this lecture we consider aspects of transport implied in the forward reac­
tion. 

From the viewpoint of the carbon cycle, transport is especially important if 
the reaction is transport-limited, i.e., if the rate of the forward reaction is 
determined more by transit times than by the time it takes for dissolution. 

In this idealization, we imagine that a raindrop immediately dissolves miner­
als, and we seek to understand the geometry of the path taken by the raindrop 
were it to continue to the ocean. 

We could proceed to associate time scales with travel paths, but we shall 
limit ourselves to purely geometric considerations. 

1.2 Drainage basins and river networks 

Our idealized raindrop falls in a drainage basin, and eventually flows through 
a river network. 

River networks are among the most beautiful of Nature’s large-scale scale-
invariant phenomena. 
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To see what we mean by scale-invariant, we briefly return to random walks. 

1.3 Scale invariance of random walks 

Define the rms excursion r = (x2(t))1/2 . We have previously shown that 
1/2 r ∝ t . 

Now rescale time t → bt and note that 

r(t) = b−1/2 r(bt). 

This simple manipulation yields a remarkable observation: the statistics of 
the random walk are unchanged by the simultaneous rescaling 

x → b1/2 x, t → bt. 

This means that the random walk is statistically equivalent at all scales, e.g. 

Here b = 1/5 and the inset is “blown up” by stretching the horizontal axis √ 
by a factor of 5 and the vertical axis by 5. 
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[Another example: go to any financial website that provides graphs of market 
fluctuations at a time scale of your choosing (days, weeks, months, years). 
Note that aside from long-term trends, all graphs look alike!] 

Although we present the random walk as an example of scale-invariance, note 
that space and time do not scale in the same way. 

1.4 Allometric scaling 

River basins exhibit a similar phenomenon: they too have statistically similar 
shapes at all scales, but their dimensions scale differently. 

We refer to the two lengths as Lf and L⊥: 

The area a is 
a ∝ LfL⊥. 

Measurements made from maps typically show 

L⊥ ∝ LH 1/2 � H � 1f , 

and therefore 
a ∝ L1+H 

f 

The case H = 1 in (a) yields geometric similarity or self-similarity: no matter 
what the size of a, all basins “look alike.” 

The case H  = 1 in (b) is called allometric scaling (as opposed to “isometric”): 
dimensions grow at different rates. 
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Specifically,   H−1L⊥ 1 − 1−H 
1+H∝ LH−1 ∝ a = a 1+H . 

Lf
f 

Since observed values of H fall within 0 < H < 1, 
1 − H 

> 0. 
1 + H 

Therefore 

• large river basins tend to be long and thin; and 

• small river basins tend to be short and fat. 

Upon appropriate rescaling, however, they all look the same. 

1.5 Size distribution of river basins 

Suppose we stand at a point x0 chosen at random on a landscape. What is 
the size of the area a that drains into it? 

We could estimate a by walking uphill from x0, always following the steepest 
path. That brings us to a drainage divide, providing an estimate of Lf. 

Obtaining the full area a, however, requires more work. A particularly labor 
intensive method would be to create a grid of, say, 1 m, and to place a person 
at each grid site above x0. We then ask each person to follow his/her path of 
steepest descent from one grid site to the next. Then if N people eventually 

2arrive at x0, the drainage basin has size N m . 

More generally, what is the probability distribution Pa(a) of drainage areas? 

To answer this question we create a model of a landscape made of random 
bumps. The bumps are smooth on a small scale but otherwise independently 
chosen from some well-behaved distribution like a Gaussian. 

We then tilt the landscape so that all paths of steepest descent are always 
directed in the direction of the tilt. 
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We then populate the landscape as before, and follow each path of steepest 
descent. Supposing that the square grid is oriented 45◦ to the tilt direction, 
each step down will also be a step to the left or right, and the coalescence of 
the various paths will look like this: 

If we then trace out any basin, we find that its left and right boundaries are 
particular realizations of a random walk. 

This is Scheidegger’s 1967 model of river networks [4]. 

Since for a random walk we have (x2)1/2 ∝ t1/2, we substitute 

t → Lf, x → L⊥ 

and conclude 
1/2 3/2

L⊥ ∝ Lf ⇒ a ∝ Lf . 

Since our random walks are always directed toward the bottom boundary, the 
length l of the longest stream in each basin scales like 

l ∝ Lf 

and therefore 
2/3l ∝ a . 

Real rivers exhibit a similar scaling law, called Hack’s Law [5]: 

l ∝ a h , 0.57 h 0.60. 
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The correspondence between the two suggests that our model is reasonable. 

To find Pa(a), we write 

φl(y) = left basin boundary 
φr(y) = right basin boundary 

and assume that they both start at y = 0. Note that the difference 

φ(y) = φl(y) − φr(y) 

is itself a random walk that not only begins at y = 0 but also ends at y = 0. 

We ask a precise question: What is the probability that φ(y) returns to its 
initial position for the first time after n steps? 

This is the classic first-return or first-passage time of a random walk. The 
answer, for large n, is [6, 7] 

1 −3/2P (n) = √ n . 
2 π 

Since our random walks are directed, the main steam length l ∝ n. Therefore 

Pl(l) ∝ l−3/2 . 

Recall that we seek the area distribution Pa(a). We assume a continuous 
distribution of areas and seek 

Pa(a)da = Prob(a is between a and a + da). 

We assume that Pl(l) is also defined continuously. Then, since l = l(a), the 
probabilities Pa(a) and Pl(l) are related by 

Pa(a)da = Pl(l)dl. 
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Recalling that l ∝ a2/3, we have   dl 
Pa(a)	 = Pl l(a)

da 
2/3)−3/2 −1/3∝ (a a 

−4/3 = a . 

Real rivers exhibit 

−τPa(a) ∝ a , τ = 1.43 ± 0.02, 

suggesting once again that our model is reasonable. 

1.6 Scaling relation 

Gathering our results, we have 

l ∝ a	 h 

−τPa(a) ∝	 a 
l−γPl(l) ∝ 

where, comparing Scheidegger’s random-walk model to real observations, we 
have 

Exponent Scheidegger Real world 
h 2/3 0.58 ± 0.02 
τ 4/3 1.43 ± 0.02 
γ 3/2 1.8 ± 0.1 

Since we are looking at areas and lengths, we expect that, whatever their real 
values, the exponents h, τ , and γ should be related to each other. We find 
this relation by writing   dl 

Pa(a) = Pl l(a)
da 

h)−γ h−1∝ (a a 
−[1−h(1−γ)]= a , 
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which yields  

τ = 1 − h(1 − γ).  

This is an example of a scaling relation: an algebraic relationship that gives 
the explicit dependence between exponents. In this case, it says that we need 
only know two exponents to obtain the third. (Further work [8,9] shows that 
there is only one independent exponent.) 

Our scaling relation is readily verified by substituting the value for Scheideg­
ger’s model:   

4 2 3 
= 1 − 1 − 

3 3 2

As for the real world, we have 

1.43 r 1 − 0.58(1 − 1.8) = 1.46. 

Overall we see that the statistical geometry of river networks—the power-
law scaling, and the relations between the exponents—is well described by 
Scheidegger’s random walks. 

Note that we have said nothing about how real rivers form. 

Instead we note that their tendency to aggregate (i.e., connect) as they flow 
downhill is the main ingredient necessary to account for their principal geo­
metric features after they form. 

We suspect that this reflects the universal properties of random walks: i.e., 
that the mean square fluctuation in one dimension scales roughly like the 
mean fluctuation in the other. 

If this is true, it means that natural landscapes contain no particularly special 
features that suggest that the typical paths of steepest descent are unlike 
random walks. 

That the Scheidegger model does not capture the correct values of the expo­
nents τ , h, and γ suggests nevertheless that something important is missing. 

We proceed to consider what that might be. 
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1.7 Universality classes  

Let us consider our random-walk model as a member of a wider class of 
models based on the kind of path taken by flowing water: 

• (a) Non-convergent. 

• (b) Directed random walks (Scheidegger). 

• (c) Undirected random walks. 

Now consider Hack’s law l ∝ ah .  

The trivial non-convergent case (a) yields h = 1.  

Directed random walks (b) yield h = 2/3.  

Undirected random walks (c) yield h = 5/8 [10].  

Remaining exponents are obtained from our previous scaling relation, aug­
mented by the additional relation τ = 2 − h [8, 9].  

Each of these cases may be considered universality classes. These classes are  
delineated by qualitative conditions: here, the way in which flowing water  
can aggregate. These qualitative conditions then lead to specific quantitative  
predictions of exponents.  

Which universality class is “correct”? One could argue that undirected ran­
dom walks are the most realistic class, and that it is no surprise that their  
Hack exponent, h = 5/8, is the closest to the observed h r 0.58.  

Although such reasoning may possibly be valid, it misses the main lesson:  
Aggregating random walks capture the main features of river network geome­
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try. 

1.8 Null models 

Our model of aggregating random walk models may be thought of as a null 
model. 

A null model is a model which ignores nearly all details of a real process but 
reproduces some essential characteristics of that process. 

Here we have found that the scaling laws for river networks are essentially 
consistent with our null model. 

In doing so, we could conclude that the details do not matter. 

We might however suggest that the model requires more ingredients to get 
the exponents “right.” 

In that way we would claim that a mismatch of exponents suggests that the 
null model is an insufficient representation of reality and that, e.g., a key 
physical process is missing from the model. 
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