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1 Plate tectonics: the volcanic source 

Earth’s biological carbon cycle derives its energy from the sun, which fuels 
photosynthesis. 

A small portion of the organic carbon that is fixed is buried as rock. Likewise, 
some inorganic carbon is buried as carbonate. 

If this burial were to continue without replacement, all the carbon in the 
atmosphere and oceans would be gone within about 106 yr. 

There must therefore be a resupply of CO2 from geologic sources. 
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This resupply of CO2 comes via volcanism. The relative magnitude of its flux 
is small [1]: 

source  
volcanism  

other degassing  
combustion  
respiration  

flux (Gt C/yr) 
0.1 
0.1 
8.7 
100 

Volcanism is nevertheless hugely significant at evolutionary time scales: with­
out it, the carbon cycle would have long ago grinded to a halt, and life as we 
know it would not exist! 

In this way the biological carbon cycle is inextricably tied to the geological 
carbon cycle, or “rock cycle.” 

The rock cycle is fueled by the heat flux that comes out of the Earth. We 
proceed to describe an important manifestation of this heat flux: plate tec­
tonics. 

We then use mathematical and physical reasoning to quantitatively evaluate 
predictions of plate tectonics. 

1.1 Thermal convection and plate tectonics 

There are two internal sources of heat: 

•	 Heat accumulated during the process of planetary accretion, i.e., the 
gravitational energy dissipated by the formation of the Earth 4.5 Ga. 

•	 Heat generated by the radioactive decay of uranium, thorium, and potas­
sium. 

To first approximation, then, we can think of the Earth as being heated from 
within and cooled at its surface. 
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We seek an understanding of how the resulting heat flux generates volcanism 
and crustal motion at the surface. 

1.2 Conductive vs. convective heat flow 

Measurements of temperature within the Earth’s crust show that heat “flows” 
upward out of the Earth. 

In general, there are two types of heat flux: conductive and convective. 

•	 Conductive heat flux: only heat is transported, but not the material 
being heated. 

•	 Convective heat flux: material is transported along with heat. 

Which one characterizes the geophysical heat flux? 

To investigate this problem, we consider a simpler problem in which a fluid 
confined between two parallel heat-conducting plates is heated from below. 

T=T0 + δT T=T0 + δT

dg

T=T0 (cold)

fluid

temperature

pure
conduction

T0

(hot)

In the absence of convection—the transport of hot fluid up and cold fluid  
down—the temperature gradient is constant.  

Recall, however, that hot fluid rises in a thermally expansive fluid.  

There are thus two cases of interest:  
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•	 δT small: no convective motion, due to stabilizing effects of viscous 
friction. 

•	 δT large: convective motion occurs. 

The convective case corresponds to the plate tectonic motions that interest 
us. 

1.3 Rayleigh number 

Reference: [2].  

How large, then, is a “large δT ” ? We seek a non-dimensional formulation.  

The following fluid properties are important:  

•	 viscosity 

•	 density 

•	 thermal expansivity 

• thermal diffusivity (heat conductivity) 

Convection is also determined by 

•	 d, the box size 

•	 δT (of course) 

Consider a small displacement of a cold blob downwards and a hot blob 
upwards: 
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T=T0 + δT

T=T0

Left undisturbed, buoyancy forces would allow the hot blob to continue rising 
and the cold blob to continue falling. 

There are however damping (dissipation) mechanisms: 

• diffusion of heat 

• viscous friction 

Let D = thermal diffusivity, which has units 

length2 
[D] = 

time 
The temperature difference between the two blobs can therefore be main­
tained at a characteristic time scale 

d2 
τth ∼ 

D 

We also seek a characteristic time scale for buoyant displacement over the 
length scale d. 

Let 

ρ0 = mean density 
Δρ = −αρ0ΔT, α = expansion coefficient 

Setting ΔT = δT , 

buoyancy force density	 = |§gΔρ| 
= gαρ0 δT. 

5 
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Note units:  
mass 

[gαρ0δT ] = 
(length)2(time)2 

The buoyancy force is resisted by viscous friction between the two blobs 
separated by ∼ d. 

Viscosity is analogous to heat diffusivity, but it instead refers to the diffusion 
of momentum, so that fast-moving fluid causes nearby slow-moving fluid to 
to move faster, and vice-versa. 

Because viscous stresses ∝ velocity gradients, the viscous friction between 
the two blobs diminishes like 1/d. 

We represent the viscosity with the coefficient µ, which has dimensions 

mass M L2 M 
[µ] = × diffusivity = = . 

volume L3 T LT 

The rescaled viscosity has units 
µ mass 

= . 
d (length)2(time) 

Dividing the rescaled viscosity by the buoyancy force, we obtain the charac­
teristic time τm for convective motion: 

µ/d µ
τm ∼ = . 

buoyancy force gαρ0 d δT 

Convection (sustained motion) occurs if 

time for motion < diffusion time for temperature difference 
τm < τth 

Thus convection requires 
τth 

> constant 
τm 

or 
ρ0gαd

3 
δT ≡ Ra > constant 

µD 
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Ra is called the Rayleigh number. (A detailed stability calculation reveals 
that the critical constant is 1708.) 

Our derivation of the Rayleigh number shows that the convective instability 
is favored by 

• large δT , α, d, ρ0. 

• small µ, D. 

In other words, convection occurs when the buoyancy force ρ0gαd3 δT exceeds 
the dissipative effects of viscous drag and heat diffusion. 

Note that box height enters Ra as d3 . This means that small increases in box 
size can have a dramatic effect on Ra. 

For Ra sufficiently large, the flow becomes turbulent. Some examples (from 
Prof. Jun Zhang, NYU, http://www.physics.nyu.edu/∼jz11/): 

Here the gray scale is related to the thermal 
gradient. 

7  

 

Image courtesy of Prof. Jun Zhang, New York
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Here the viscous flow moves the floating 
boundary and the the boundary affects the 
flow, an interplay roughly analogous to fluid 
motions beneath tectonic plates. 

A close-up (red is cool, 
blue is warm). 

1.4 Convection in the Earth 

The Earth’s radius is about 6378 km. It is layered, with the main divisions  
being the inner core, outer core, mantle, and crust.  

The Earth’s crust—the outermost layer—is about 30 km thick.  

The mantle ranges from about 30–2900 km.  

The mantle is widely thought to be in a state of thermal convection. The  
source of heat is thought to be the radioactive decay of isotopes of uranium,  

8  
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thorium, and potassium. Another heat source is related to the heat deriv­
ing from the gravitational energy dissipated by the formation of the Earth 
roughly 4.5 Ga. 

At long time scales mantle rock is thought to flow like a fluid. However its 
effective viscosity is the subject of much debate. 

One might naively think that the huge viscosity would make the Rayleigh 
number quite small. Recall, however, that Ra scales like d3, where d is the 
“box size”. For the mantle, d is nearly 3000 km!!! 

Consequently Ra is probably quite high. Estimates suggest that 

3 × 106 � Ramantle � 109 

which corresponds to roughly 

103 × Rac � Ramantle � 106Rac 

The uncertainty derives principally from the viscosity, and its presumed vari­
ation by a factor of about 300 with depth. 

Regardless of the uncertainty, we can conclude that Ra for the mantle is 
more than sufficient for convection, and therefore that convection is likely 
the driving force of plate tectonics. 

1.5 Mid-ocean ridges, seafloor age, and volcanism 

Reference: [1, 3]. 

Two kinds of plate motion caused by plate tectonics are of interest to the 
carbon cycle: 

•	 Divergent (constructive) margins, typically at mid-ocean ridges, where 
new seafloor is created by volcanic processes. 

•	 Convergent (destructive) margins, where plates collide and, typically, 
one plate is subducted beneath the other. The process forms island 

9  



            
   

          

   
    

   
 

          

   

           
       

  

chains and mountain ranges, and results in volcanism about 250 km into 
the over-riding plate. 

Divergent margins are readily recognizable from maps of seafloor age: 

Seafloor age. Young 
seafloor is red, old 
is blue (NOAA, 
Wikipedia). 

The volcanic “Ring of Fire” occurs along convergent margins:  

Volcanism • (USGS). 

Total CO2 outgassing at convergent and divergent margins is roughly equal, 
within a factor of two or so. 
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1.6 Seafloor heat flux and topography 

Reference: [4]. 

Aspects of the qualititative discussion above can be quantitatively expressed 
and compared to observations. 

In the following, we calculate the heat flux out of the seafloor as a function 
of its age, or distance from the ridge, and compare it to measurements. 

As the seafloor cools with age, it becomes more dense and effectively sinks 
more deeply into the underlying mantle. We predict how this change occurs 
and also compare it to measurements. 

All this derives from the diffusive transport of heat, to which we now turn. 

1.6.1 Heat equation 

To keep things simple, we consider spatial variations of temperature T only 
with respect to a single spatial coordinate z (i.e., depth beneath the seafloor). 

Define 
j = flux of heat through a unit area, 

which has units 
watt joule/s

[j] = = .
2 2m m 

Fourier’s law states that the flux j is proportional to the temperature gradi­
ent: 

∂T 
j = −k , (1)

∂z 
where k is the thermal conductivity, with units 

watt 
[k] = .◦K · m 

Consider a slab with an incoming heat flux j(z) and an outgoing heat flux 
j(z +Δz): 

11 



                
          

              
    

 

               
    

   
  

  
 

             
  

 
   

  

        

   

   
  

  

           
  

   
  

  

If there are neither sources nor sinks of heat, then a net heat flow into the 
slab must change its temperature (i.e., energy is conserved). 

Suppose the temperature of the slab increases by an amount ΔT during a 
short time Δt. 

Define 

c	 = heat required for a 1◦K change in a unit mass of the slab 
= specific heat capacity. 

which has units 
joule

[c] = . 
kg ◦K 

Then 

[j(z) − j(z +Δz)]Δt = (heat absorbed by slab over time Δt)/area 
slab mass 

=	 cΔT 
area of slab face 

= cΔTρΔz 

where ρ is the density of the slab. 

Rearranging, we have 

ΔT j(z) − j(z +Δz)
ρc = 

Δt Δz 

In the limit as Δt → 0 and Δz → 0, 
∂T ∂j 

ρc = − . 
∂t ∂z 

12 
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Substitution of Fourier’s law (1) for j then gives 

∂T ∂2T 
= D , (2)

∂t ∂z2 

the one-dimensional heat equation or diffusion equation, where the thermal 
diffusivity 

k length2 
D = , [D] = . 

ρc time 

1.6.2 Heating of a semi-infinite medium 

We next consider a classic problem. Suppose that the temperature is a con­
stant (say, T = T0) for all z > 0, but at time t = 0, the surface z = 0 is held 
at a higher or lower temperature Ts. 

How does the temperature T (z, t) of this half-space, or semi-infinite medium, 
change in time and space? 

In other words, we seek the time-dependent solution of the heat equation 
subject to the conditions 

T = T0, z > 0, t = 0  
T = Ts, z = 0, t > 0  
T → T0, z → ∞, t > 0.  

Conceptually, we envision the transfer of heat from the surface z = 0 inwards. 

(Note that in the seafloor problem, the half-space will be cooled from above, 
so that Ts < T0, but the mathematical development is unchanged.) 

13 



             
                

     
  

   
   

      

  
  

  

      

   
 
 

           
            

              
 

  

    
   

           
 

    
  

         

             
              

     

            
             
            

         

  

To make matters simpler, we consider only the difference T − T0 of tempera­
ture with respect to the amount Ts − T0 by which the surface is heated. We 
therefore define the dimensionless variable 

T − T0
θ = . 

Ts − T0 

The diffusion equation (2) then becomes 

∂θ ∂2θ 
= D (3)

∂t ∂z2 

and our boundary conditions are now 

θ(z, 0) = 0 
θ(0, t) = 1 

θ(∞, t) = 0. 

Obviously θ varies with both time and space. However, because no charac­
teristic length scale exists (i.e., the medium is semi-infinite, and the heating 
is at the boundary), the only quantity other than z with dimensions of length 
is 

(Dt)1/2 . 

We therefore suspect that 
θ(z, t) = θ(η), 

i.e., that θ is a function of the single dimensionless variable 
z 

η = √ , 
2 Dt 

where the factor of two is chosen for convenience. 

η is called a similarity variable, because solutions at different points z and 
different times t are equivalent so long as η is unchanged. The solutions are 
then said to be self-similar. 

As a practical matter, expressing the diffusion equation in terms of θ(η) 
rather than θ(z, t) allows us to transform a partial-differential equation to an 
ordinary differential equation. This is a classic trick in such problems, which 
in this case is known as the Boltzmann transformation. 

14 



              
  

	   
 

	   
   

  
 

 
  

  

 
   

  
       

   
 

   
 

   
   

         

   
   

   

 
   

   

 
  

    

 
  

  

           

   
	   
    

   
  

 	  
  

       

       

     
      
      

  

We proceed as follows. Using the chain rule, we transform the LHS of the 
diffusion equation: 

∂θ dθ ∂η 
= 

∂t dη ∂t   
dθ 1 z 

= − √ 
dη 4t Dt 
η dθ

= − . 
2t dη 

To obtain the RHS, we first write 
∂θ dθ ∂η 

= 
∂z dη ∂z 

1 dθ 
= √ . 

2 Dt dη 

Using this result and again invoking the chain rule,   
∂ ∂θ ∂ 1 d 

= √ θ[η(z, t)]
∂z ∂z ∂z 2 Dt dη 

1 ∂η d2θ
= √ 

2 Dt ∂z dη2 

1 d2θ 
= . 

4Dt dη2 

Substitution of these results into the diffusion equation (3) then yields 

η dθ 1 d2θ − = D 
2t dη 4Dt dη2 

or more simply 
dθ 1 d2θ − η = (4)
dη 2 dη2 

Note that all terms are now dimensionless. 

To obtain the boundary conditions, note that 

z = 0 → η = 0, 
z = ∞ → η = ∞, 
t = 0 → η = ∞. 

15 



      

   
 

         

 
  

 

      

 
  

 

  
 

    
 

     
       

            
 

   

        

  
  

 

      
  

     
 

             

  

           
  

   
 

  

The new boundary conditions are then 

θ(0) = 1 
θ(∞) = 0 

To solve equation (4) with these boundary conditions, define 

dθ 
φ = (5)

dη 

and substitute into (4) to obtain 

1 dφ −ηφ = 
2 dη 

or, equivalently, 
dφ −2η dη = . 
φ 

Integrating both sides, we obtain 

−η2 = ln φ − ln C1, 

where − ln C1 is an integration constant. We thus have that 
−η2 

φ = C1e . 

Combining this result with equation (5), we find 

dθ −η2 
= C1e . 

dη 

which upon integration becomes 
η 

−η,
2 

θ(η) = C1 e dη ' + C2. (6) 
0 

Using the boundary condition θ(0) = 1, we find that the integration constant 

C2 = 1. 

Thus the second b.c., θ(∞) = 0, requires that 
∞ 

−η,
2 

0 = C1 e dη ' + 1 
0 

16 
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and therefore   ∞ 
−η,

2 
= e dη ' 

C1 0 

−1 

√
π 

= ,
2 

which may be found in a table of integrals. Inserting the constants C1 and 
C2 into (6), we find   η−2 − ,ηθ(η) = √ e 

2 
dη ' + 1,

π 0 

or more succinctly 
θ = 1 − erf(η) 

where the error function   η2 ,−ηerf(η) = √ e 
2 
dη ' . 

π 0 

Not only does erf occur commonly in mathematics, physics, and probability 
theory, but so too does the complementary error function 

erfc(η) = 1 − erf(η). 

Using this definition, the rescaled temperature θ is simply 

θ = erfc(η), 

which is plotted below as the solid blue line: 

Reverting to dimensional variables, we have 

T − T0 z 
= erfc √ (7)

Ts − T0 2 Dt 

17 
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Looking at the plot, we see that there is a characteristic diffusion length 
√ 

η � 1 ⇒ z � Dt 

over which heat extends from the boundary into the medium. 

The essential result is that the thickness of this thermal boundary layer grows 
like t1/2, which is typical in problems of diffusion. 

1.6.3 Heat flux 

The heat flux at z = 0 is straightforwardly obtained by computing the flux 
j(0) from Fourier’s law: 

∂T 
j(0) = −k 

∂z z=0 
∂ z 

= −k(Ts − T0) erfc √ 
∂z 2 Dt z=0 

∂ z 
= k(Ts − T0) erf √ 

∂z 2 Dt z=0 

∂ ∂η d 
Noting that erf [η(z, t)] = erf(η),

∂z ∂z dη 

k(Ts − T0) d 
j(0) = √ erf(η)|η=0

2 Dt dη 
k(Ts − T0) 2 −η2 

= √ √ e 
2 Dt π η=0 

k(Ts − T0) −1/2 = √ t . 
Dπ 

The heat flux thus decreases like t−1/2 . (The singularity at t = 0 is merely the conse­

quence of the instantaneous imposition of a point source.) 

We now return to the problem of the generation of new seafloor at mid-ocean 
ridges. 

18 
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New seafloor is created at a high temperature and is cooled from above as it 
ages. Typical dimensional quantities are 

T0 − Ts = 1300 ◦K 
D = 1 mm2 s −1 

k = 3.3 W m−1 ◦K−1 

Measurements of heat flux at the seafloor compare reasonably well with pre­
dictions based on its age t (Pacific data from Ref. [5]): 

1.6.4 Seafloor topography 

As the new seafloor cools, it becomes more dense and therefore less buoyant 
with respect to the more dense, underlying mantle. From this observation we 
can predict the depth of the seafloor as a function of its age. 

The key point is that the mantle acts like a viscous fluid and the seafloor 
(i.e., the oceanic lithosphere) floats on it, but at a height determined by its 
density. 

To quantify this, recall Archimedes principle: 

Any floating object displaces its own weight of fluid. 

Consider, for example, a wooden block of vertical extent h in a bathtub. The 
block is partially immersed to a depth d < h: 

19 



  

                 
         

   
               

 
       

 
 

     
 

             
              

  

             
               
         

           
       

  

  

Take ρw to be the density of the water and ρ the density of the block. From 
Archimedes’ principle, we have the hydrostatic equilibrium in which 

ρh = ρwd. 
Thus the height h − d of the block relative to the water level is 

ρ 
h − d = h − h 

ρw 
ρ 

= h 1 − . 
ρw 

To apply this reasoning to the seafloor, we note that the combined weight 
of ocean + seafloor must remain the same as the seafloor cools and becomes 
more dense. 

We consider depth z(x) relative to the height of the mid-ocean ridge, and 
seek the specific depth w(x) of the seafloor. (x is the distance from the ridge, 
and w is analogous to h − d above.) 

The seafloor (i.e., oceanic lithosphere) thickens as it cools, because underlying 
hot mantle material is converted to lithosphere. 

20 
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Define 
h(x) = seafloor thickness a distance x from the ridge. 

Then the weight of any column (of ocean + lithosphere) a depth h beneath 
the seafloor is simply the weight of the water + the weight of the lithospheric 
part of the column. 

Let 

ρ(x, z) = density of lithosphere a distance x from the ridge at depth z. 

From Archimedes, we know that the integrated mass in any column to a depth 
w + h must equal the mass computed using the density ρ0 of the mantle over 
the same vertical extent. Thus 

h 
ρww + ρdz = ρ0(w + h) 

0 

or 
h 

w(ρw − ρ0) + (ρ − ρ0)dz = 0 (8) 
0 

This is known as isostatic equilibrium. The first term is negative (mantle 
rock is denser than water). The second term is positive, since, as it cools, the 
density of the lithosphere becomes heavier than the mantle density. 

Specifically, assume that the density ρ of the seafloor increases with respect 
to the mantle density ρ0 according to 

ρ − ρ0 = −ρ0α(T − T0), 

where T0 is the temperature of new seafloor before it starts to cool, and α is 
the coefficient of thermal expansion. 

Inserting equation (7) for T − T0 we obtain 

z 
ρ − ρ0 = −ρ0α(Ts − T0) erfc √ (9) 

2 Dt 

where Ts is the temperature of the seawater above the seafloor and we take 

ρ(x,  z)  →  ρ(t,  z), t  =  |x|/u    

21    
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               where t is the age of the seafloor and u is the spreading rate. 

We insert (9) into the isostatic equilibrium (8) to obtain 
∞ z 

w(t)(ρ0 − ρw) = ρ0α(T0 − Ts) erfc √ dz (10) 
0 2 Dt 

where w(t) is now the depth of the seafloor with age t and the integral now 
extends to z = ∞. 

√ 
Substituting the similarity variable η = z/(2 Dt) into the integral, we have     ∞ ∞ z         d z  

erfc √ dz = erfc(η)  dη  
0 2 Dt 0 dη 

∞√ 
= 2 Dt erfc(η)dη 

√ 0

2 Dt 
= √ . 

π 
√ 

where we have used ∞ 
erfc(η)dη = 1/ π.0 

Finally, we substitute this expression into (10) to obtain 

2D1/2ρ0α(T0 − Ts) 1/2 w(t) = t . 
π1/2(ρ0 − ρw) 

Note that we have once again found a diffusive scaling in which a length 
varies like t1/2 . 

We test this prediction by comparison with seafloor bathymetry from the 
North Atlantic, using data from Ref. [6]. We use the same values of Ts − T0 
and D we used for the heat flux in Section 1.6.3, supplemented by 

3ρ0 = 3300 kg m− 

3ρw = 1000 kg m− 

5 ◦K−1α = 2.8 × 10− 

The agreement for ages up to about 80 Myr is excellent: 
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Possibly the departure from theory at old ages is due to some secondary heat 
transfer from the mantle due, e.g., to convection. 

1.6.5 Spreading rate and CO2 production 

The foregoing analysis amounts to an excellent confirmation of seafloor spread­
ing. 

We then ask: what controls the rate at which CO2 is “produced” by degassing 
of magma at mid-ocean ridges? 

A reasonable assumption is that the CO2 production rate is proportional to 
the rate of seafloor production, which we express in terms of the spreading 
rate u: 

CO2 production rate ∝ u	 = spreading rate 
r 2–10 cm yr−1 . 

We found above, in Section 1.6.3, that the heat flux j from the seafloor 
decreases with its age t like 

−1/2j ∝ t . 

Assuming that seafloor age is uniformly distributed, the mean (spatially av­
eraged) heat flux j̄ then scales like 

tmax1¯	 −1/2dtj ∝	 t 
tmax 0 
−1/2∝ t ,max 
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where tmax is the typical age at which seafloor is consumed (i.e., subducted). 

Taking L to be a characteristic distance between ridges and subduction zones, 
the age of subducting materal then scales with the spreading rate like 

tmax ∼ L/u. 

The mean heat flux therefore scales like 
1/2j̄	 ∼ 

1 ∝ u . (11)
(L/u)1/2 

Invoking the assumption that CO2 production scales like the spreading rate 
u, we then have that the 

CO2 production rate ∝ j̄2 . 

The quadratic dependence of CO2 production and spreading rate on the heat 
flux results from diffusive scaling. 

This nonlinear amplification informs our knowledge of past environments: 
because the heat flux from the early Earth would have been about 2–3 times 
greater than today, CO2 production from “volcanism” would have been about 
4–9 times greater [7]. 

1.6.6 Kelvin’s estimate of the age of the Earth 

Reference: [8]. 

The foregoing amounts to the “new view of the Earth” that first developed 
during the 1960s. One way to appreciate how huge such changes were is to 
consider Kelvin’s famous 19th century estimate of the age of the Earth. 

Kelvin’s reasoning was delightfully simple, making the following assumptions: 

•	 The Earth began its geological history at a uniform temperature of about 
T = 4000 ◦C. 

• The earth then cooled, due to a constant T r 0 ◦C boundary condition 
at the surface. 
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Reasoning as in Section 1.6.3, he found that 

1 
heat flux ∝ √	 (12) 

age 

and used estimates of the heat flux in Edinburgh and appropriate dimensional 
constants to find that the Earth’s age was about 20 Myr. 

This not only threatened the biblical version of Earth history, but also the 
view of the geologist Lyell, for whom the Earth was unchanging throughout 
essentially infinite time (a concept known as “uniformitarianism”). 

The eventual knowledge of radioactivity and the advent of age dating proved 
Kelvin wrong: the Earth is about 4.5 billion years old, about 100 times older 
than Kelvin’s estimate. 

What was wrong with Kelvin’s theory? 

There are two problems: 

•	 Kelvin was unaware of the heating due to radioactive decay, which pro­
vides a prolonged source. 

•	 He ignored thermal convection. 

The latter problem turns out to be the more serious deficiency, because con­
vection greatly increases the observed heat flow (see equation (11)), and there­
fore, via (12), it can easily lead to a serious underestimate of age. 

1.7 Summary 

Thermal convection is the “engine” that drives plate tectonics and volcanism. 

It turns out that volcanism is, over the long-term, responsible for the CO2 in 
the atmosphere, and thus the source of carbon that is fixed by plants. 

Thus volcanism may be said to sustain life. 
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Without it, there probably would be no CO2 in the atmosphere, and therefore 
we wouldn’t be around to discuss it... 
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