
12.086/12.586 Problem Set 3
Percolation

Due: November 13

October 28, 2014

1. Flood Plains In central Africa there are large, flat plains which are home to elephants,
baboons, wild dogs, and lions. In the dry season, the landscape has many small water
holes. However, during the rainy season, the ponds flood and the landscape has a
large interconnected water way (watch Planet Earth for footage of this). Thus, aquatic
animals are isolated from each other during the dry season, but can mix in the wet
season. A similar example has been found in the fossil record where a population of
mollusks was seen to have periodic episodes of intense speciation when the climate
was dry (leading to many isolated communities living in disconnected ponds), while
being more homogeneous during wet climates. An interesting question is: how much
rain does it take to transform a landscape of many small, disconnected ponds into one
with at least one giant lake? We will answer this question using percolation theory.
The initial ponds form in minima of the topography. In order for two ponds to be
connected, water levels need to rise enough to swamp the land between them. If the
water levels rise, a certain proportion p of the ridges will flood. In this case, how large

Figure 1: Bond Percolation for various values of p. The baboon is sitting at a site (red circle)
between 4 ponds (blue circles). It could potentially move to any of the neighboring plots of
dry ground (red ‘X’), however the ridges that connect the red circle to the land to the North
and West are flooded out (blue lines).
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must p be for there is an infinitely large lake? This process is called bond percolation.
But rather than placing sites at random, we will place bonds between neighboring sites
with probability p (Figure 1).

(a) To gain some intuition, begin by placing local minima of the topography (i.e.
ponds) on a square lattice. Think about a baboon that is sitting on the ground
between 4 ponds. What is the probability p̂ that the baboon can walk to the dry
land to the East without getting wet? In the lingo, the baboon walks on the dual
of the square lattice.

(b) Let p̂c be the critical value of p̂ such that there is an infinite tract of land where
the baboons can walk without getting wet. What is p̂c in terms of pc? (Hint:
Draw a picture)

(c) Given the last two results what is the value of pc?

(d) Return to a more realistic case. Assume now that the topography is a a surface
whose height fluctuations from its mean have a Gaussian distribution with mean
elevation 0 (Figure 2). If the water level rises to h, everything with elevation
less than h will flood. How high must h be to ensure that there is an infinite
lake? (Hint: A similar trick as before works since the topography is symmetric
above and below the mean. How would the picture change if the topography were
turned upside down and everything higher than h flooded?)

Figure 2: A surface whose height fluctuations from its mean have a Gaussian distribution.
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2. Chemical Avalanches It has been observed that when a liquid dissolves a solid at low
temperature, the reaction does not happen at a constant rate. Rather, the dissolution
front eats into the solid in fits and jumps called chemical avalanches. Here we will
explore a model of dissolution based on two assumptions.

• Any small volume of the material on the surface of the solid will react at a rate
Ri ∝ e−Ei/kBT . Here Ei is an activation energy and kBT is the thermal energy of
the material.

• The activation energy is a random variable Ei = E0 +pi∆E, where pi is uniformly
distributed between zero and one. For ease of notation, define Θ to be kBT/∆E.
Thus, Ri = τ−1

0 e−pi/Θ. Here τ0 is a constant with units of time.

This phenomenon has been observed in the lab. For example, when CuCl2 is dissolved
in water and placed on a strip of magnesium, the magnesium replaces the copper, ac-
cording to the reaction Mg(s)+CuCl2(aq)→ MgCl2(aq)+Cu(s). Furthermore, during
each reaction a small, magnetic pulse is produced. By measuring the magnitude of
the magnetic field, it is possible to track how quickly the magnesium bar is dissolving.
Interestingly, at low temperatures the bar does not dissolve at a constant rate. Figure
3 shows the magnetic field as a function of time and a histogram of the size of magnetic
pulses (these figures are from Claycomb et al. Phys. Rev. Lett. 87 (2001) 178303).
We observe a power law distribution of event size (i.e. the probability that N many
reactions occur together scales like N−µ). These avalanches are phenomenologically
similar to the avalanches we studied in Per Bak’s sand pile. In fact, Claycomb et al.
develop a sand pile model to describe this experiment.
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Figure 3: Left: Strength of the magnetic field (proportional to the number of reactions) as
a function of time. Right: Histogram of the size of peak values.

(a) First, find the probability that a particular site on the surface will be the next
to dissolve. The probability that any particular site will dissolve in the next
short amount of time ∆t is Ri∆t. How long should ∆t be to predict that one
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site somewhere on the surface dissolves in this period of time? Given that the
probability Pi of a particular surface site dissolving is proportional to it reaction
rate, what must the proportionality constant be?

(b) Given the result from the last part, we can simulate the reaction. At each time
step we first look at the reaction rates on the surface to find how long we need
to wait before a reaction will occur. We then select which site will dissolve using
the probability distribution. We remove the selected site and write down that an
amount of time ∆t elapsed during that time step. The simulation finishes when
half of the availible points have been removed. Write code that will simulate this
process in two dimensions (or use the code on the website). Run the simulation
at high temperature and low temperature. Describe qualitatively the difference
between the two.

(c) For a given temperature Θ, what proportion π of sites will take longer than τ to
dissolve? (Hint: what is the probability that a randomly selected point will?).
To gain some intuition for the system, we can paint all of the points that decay
faster than τ red (hot) and those that decay more slowly blue (cool). Blue points
are placed with probability π and red points are placed with probability 1 − π.
There is code online to let you see the hot and cold points for a given choice of τ
and Θ. Take a look.

(d) For a given Θ and τ we can understand the dynamics of the front in terms of two
phenomena walls and holes. A wall is a connected set of points that decays slowly
and spans the system. A hole is a connected set of points that decay quickly.
What happens when the front encounters a wall? What is the largest value of τ
for which there still exists a wall somewhere in the system?

(e) We may suspect that the reaction is always limited by that amount of time it
takes to “break on through to the other side” of the slowest reacting wall. If
this is the case how does the total time it takes to run the reaction depend on
temperature? Confirm this suspicion numerically.

(f) What happens when a front encounters a hole? Describe the relation of holes to
avalanches. How do the existence of large avalanches effect the claim that there
is some characteristic time for the reaction to finish. Does the small possibility
of large avalanches effect the average time it takes for the reaction to run or our
confidence that a specific experiment will take that long to finish (i.e. the variance
in the run time)?

(g) The code online outputs the p.d.f. of avalanche size as a function of the number
of elements in it. What shape is the distribution for large Θ (e.g. Θ = 1)? What
shape is the distribution for small Θ (try Θ = 500−1). Plot the mean and variance
of this distribution as a function of temperature to show that there is a critical
temperature below which avalanches destroy any confidence in our guess for the
mean run time.
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