I AP 2008 12.091 Assignment 4

1. A meteorite of 30 meters in diameter, made of iron (density $=8 \mathrm{~g} / \mathrm{cm}^{3}$), impact velocity of $20 \mathrm{~km} / \mathrm{sec}$ hits the Earth. What is the kinetic energy of this impact?
(Note: Be careful of units of dimensions)
2. Calculate the impact kinetic energies for impactors of diameters 1 km , $10 \mathrm{~km}, 100 \mathrm{~km}$ and 200 km , for the same density of $8 \mathrm{~g} / \mathrm{cm}^{3}$ and same velocity of $20 \mathrm{~km} / \mathrm{sec}$.
3. Convert the values of energies to joules (J). (1 J $=\mathrm{kg} \times \mathrm{m}^{2} / \mathrm{s}^{2}$) Convert those values to gigajoules (GJ). (1 GJ $\left.=10^{9} \mathrm{~J}\right)$
4. 1 million tons of dynamite is equivalent to $4 \times 10^{15} \mathrm{~J}$.

Calculate the above impact energy in equivalent million tons (Mt) of dynamite.
5. Provide the results of questions 1), 2), 3) and 4) in tabular form and give your conclusion.

Table: Meteorite diameter vs energy of impact

Meteorite	Meteorite	Meteorite	Impact	Impact	Impact
Diameter	density	velocity	Energy	Energy	Energy
	$\mathrm{g} / \mathrm{cm} 3$	$\mathrm{~km} / \mathrm{s}$	$\mathrm{kg} \mathrm{m}^{2} / \mathrm{s}^{2}$	GJ	Mt
30 m	8	20			
1 km	8	20			
10 km	8	20			
100 km	8	20			
200 km	8	20			
350 km	8	20			

6. (Optional) Now vary the values of density and velocity within some realistic ranges, determine the impact energies and provide your understanding.

Due: End of the course (Last date Feb 4, 2008)

Dept. of Earth, Atmospheric \& PCanetary Sciences Massachusetts Institute of Technology Cambridge, $\mathcal{M} \mathcal{A}$ o2139

