

Ocean Platforms

- Lecture I
 - Ships
 - Buoys
 - Satellites
 - Cabled Observatories
- Lecture II
 - Manned Submersibles
 - Remotely Operated Vehicles (ROVs)
 - Autonomous Underwater Vehicles (AUVs)
 - The future....

- How deep do vehicles go?
 - Diving suits
 - Military submarines
 - Research submarines
 - Remotely operated vehicles (ROVs)
 - Autonomous underwater vehicles (AUVs)
- How deep is the ocean?
 - Mean depth ~4,000 m
 - Deepest ~11,000 m
- How tall is Mt. Everest?
 - 8,850 m

Manned Diving – Diving Bells

- Aristotle wrote about their use in the 4th century BC
- Edmund Halley developed a diving bell in 1690
 - 60 cubic feet
 - Air replenished in weighted casks
 - Used for depths of 20-60 ft

Manned Diving – Diving Suits

- Diving helmet
 - Provides air
 - Doesn't protect from pressure
- Jim suit
 - Rigid suit
 - Capable of 600 m depth
 - Robotic claws used

Images removed due to copyright considerations.

Manned Diving – Bathysphere

• Personnel sphere on a wire

- Developed in the 1930s
 - William Beebe and Otis Barton

Manned Diving – Bathyscapes

- Trieste
 - 50 ft long
 - Gasoline flotation
 - Water and iron ballast
 - 6 ft diameter steel capsule
 - Held two people
 - Two plexiglass windows
 - 4" inside, 16" outside, 6" thick
 - January 23, 1960
 - Challenger Deep (35,810', 10,912 m)
 - 16,000 psi

Unmanned Diving – Towed Sleds

- Camera sleds
- Sidescan sonar
- Chemical & biological sensors

Key Issues for deep submergence

- Power/Propulsion
 - Batteries
 - Cable
- Navigation
 - Transponders
 - Real-time Mapping
- Communication
 - Acoustic
 - Cable
 - Copper
 - Fiber

Manned Submersibles

- Capabilities
 - Allow humans to visit the seafloor
 - Good manipulation & sample collecting

- Limitations
 - Dives limited to ~8 hours
 - Power limited by battery life
 - Limited payload
 - Visibility limited for science observers
 - Little contact with the surface — no real-time data transfer
 - Dependent on surface weather conditions

ROVs

- Capabilities
 - Long dive times
 - Good manipulation
 - Force feedback
 - High-definition video

- Limitations
 - Tether limits movement
 - Dependent on surface weather conditions
 - Limited payload

Autonomous Underwater Vehicles (AUVs)

 Relative small, autonomous deep submergence vehicles that are pre-programed to perform specific tasks

REMUS (Remote Environmental Monitoring Units)

AUVs – Spray Glider

AUVs

- ABE (Autonomous Benthic Explorer)
 - 5,000 m depth
 - 16-34 hours
 - Optimized for mapping

- Sentry
 - 2nd generation ABE
 - Optimized for sonar surveys in rugged terrain

AUVs

- SeaBED
 - 2000 m depth
 - Can move slowly and hover
 - Optimized for imaging

- Puma & Jaguar
 - Exploration of vent fields under the Artic ice cap

AUVs

- Capabilities
 - Free-swimming
 - Not dependent on surface weather
 - Can be optimized for particular missions
 - mapping
 - imaging

- Limitations
 - Battery power
 - No real-time communications
 - Payload limited

Future Trends

- Integratings AUVs and cabled observatories
 - AUV docking
 - Optical modem technologies
- Hybrid-ROV
 - Autonomous and tethered modes
 - Capable of 11,000 m
 - Will used an armored micro-fiber cable, no power from cable

