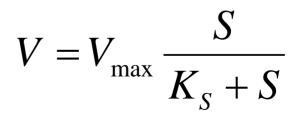
Nutrients and Biological Productivity

12.097 Lecture January 17, 2006

What is a "nutrient"?

- An element or compound that is beneficial or required for biological growth
- "Essential" nutrients are those that are required for growth – i.e., everything dies if the concentration drops below a threshold
- Major: nitrogen (N), phosphorus (P)
 silica (Si), sulfur (S) [not for all organisms]
- Minor: trace metals (e.g., Fe, Co, Mn, Zn), vitamins (e.g., B₁₂)

What concentrations are required?


- Stoichiometry of life: Redfield ratio
 - Empirical ratio of phytoplankton collected from various ocean and lake environments
 - -C:N:P = 106:16:1
 - The "limiting" nutrient is the one which is in lowest concentration relative to the other two
 - In freshwater systems, P is limiting nutrient
 - In marine systems, N is limiting nutrient (though this varies widely in coastal vs. open-ocean systems)

How do organisms acquire nutrients?

Uptake rate of nutrients is described by *Michaelis-Menten kinetics*.

V = velocity of uptake rate $V_{max} = maximum velocity$ S = substrate concentration $K_{S} = substrate concentration$ $at V = \frac{1}{2} V_{max}$

Nearly linear at small [S] Nearly flat at high [S] Image removed due to copyright considerations. Please see: http://www.steve.gb.com/science/enzymes.html

N and P

- Different "sizes": dissolved and particulate
 - Dissolved = in aqueous solution
 - Particulate = associated with particles (surfaceadsorbed, imbedded within, etc.)
- Different "forms": inorganic and organic
 - N: NH_4^+ , NO_2^- , NO_3^- , urea, proteins, nucleic acids
 - P: PO₄-³ (+ HPO₄-², H₂PO₄-, H₃PO₄), phospholipids, nucleic acids
- Oxidation states
 - N: N(V) in NO₃⁻, N(0) in N₂, N(-3) in NH₄⁺
 - P: P(V) in PO₄-³, other redox states insignificant

The Marine P Cycle: Depth Profile

- Depleted at surface (biological uptake)
- Remineralized during heterotrophic activity (~1000m and sediments)
- Remineralization is Temp-dependent (max in spring in coastal areas)

Images from eWOCE removed due to copyright considerations.

The Marine P Cycle: Surface Variability

Image removed due to copyright considerations. Please see: Levitus 1994. (See readings.)

The Marine P Cycle

- Abiotic reactions:
 - Adsorption to positive-charged minerals (e.g., clays)
 - Complexation with metals (e.g., Fe⁺³, Al⁺³, Ca⁺²)
- Biotic reactions:
 - Uptake by phytoplankton & bacteria
- Sources:
 - Continental weathering of Pcontaining minerals
 - Anthropogenic activity (soap)
 - ➔ River runoff (~90%)
- Sinks:
 - Burial of particulate material (cells, minerals) in sediments
 - Sea bird guano
- τ_{res} of diss. PO₄-³: 1-2 min

Image removed due to copyright considerations.

Please see: Valiela, 1995 (Marine Ecological Processes) (See readings.)

The Marine N Cycle: Depth Profile

- Very similar behavior to PO₄-³ Depleted at surface; remineralized at depth
- Deep water is a source of NO₃⁻ to surface ocean (via upwelling)
- NH₄⁺ and NO₂⁻ follow similar depth profiles (though much lower conc's)
- [DON] >> [DIN]

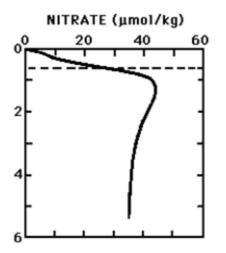
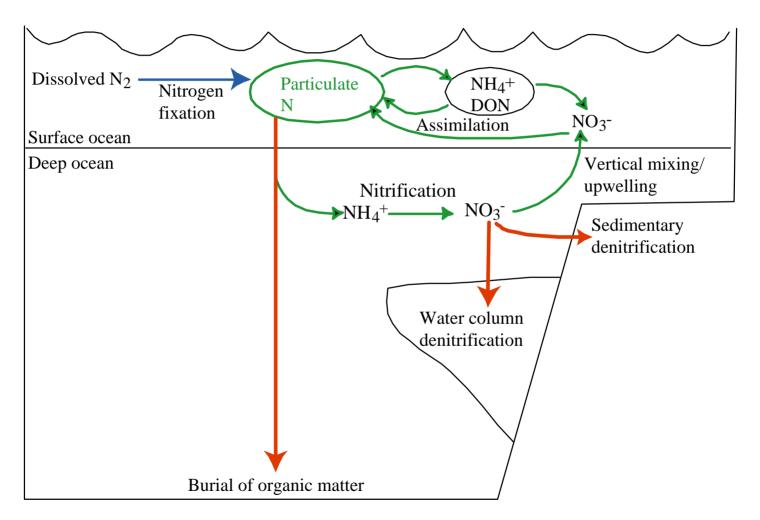


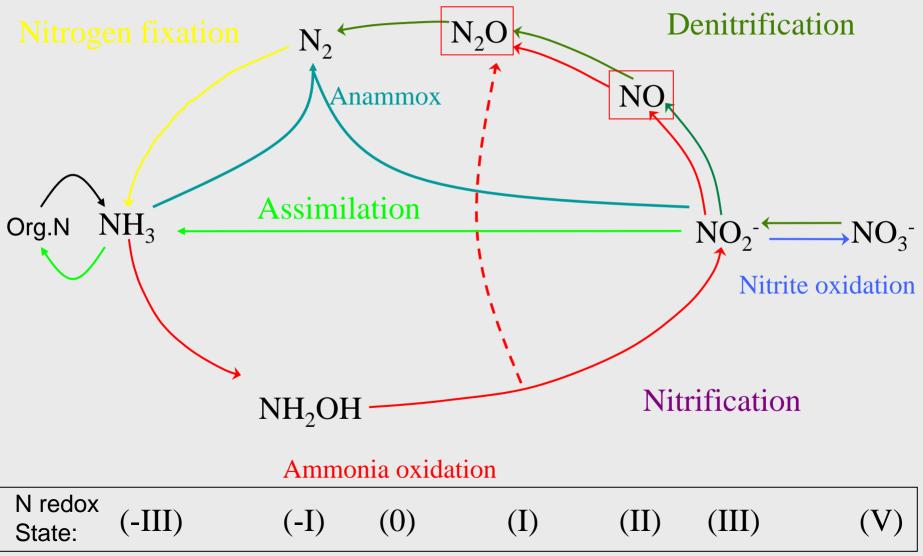
Image removed due to copyright considerations.

The Marine N Cycle: Surface Variability


Image removed due to copyright considerations. Please see: Levitus 1994. (See readings.)

The Marine N Cycle

- Many more reactions in N cycle than in P cycle
 - Due to possible changes in redox state, presence of gaseous component (N₂)
- No abiotic reactions
- Biotic reactions:
 - NO_3^- reduction:
 - Assimilatory (N used in biosynthesis)
 - Dissimilatory (N not used in biosynthesis) = Denitrification
 - NH_4^+ oxidation
- Sources:
 - N₂ fixation (anthro & natural)
 - River runoff
 - Sewage
- Sinks:
 - Biological uptake by cells
 - Burial in sediments

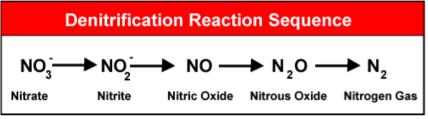

Image removed due to copyright considerations. Please see: Valiela, 1995 (*Marine Ecological Processes*) (See readings.)

The Marine N Cycle

Courtesy of Karen Casciotti. Used with permission.

Microbial N Cycle

Courtesy of Karen Casciotti. Used with permission.


N transformations in presence of O₂

- Assimilatory NO_3^- reduction: $NO_3^- \rightarrow NH_4^+$
- NH₄⁺ is most bioavailable form due to biosynthesis needs (e.g., proteins & nucleic acids)
- Organisms prefer NH₄⁺ uptake rather than NO₃⁻ due to E requirement of NO₃⁻ reduction
- NH₄⁺ is primary remineralization product of zooplankton and other heterotrophs → this can be largest source of N for phytoplankton and bacteria in open ocean (low nutrient environments)

- Nitrification (oxidation of N):
 - $NH_3 + 3/2 O_2 \rightarrow NO_2^- + H_2O + 2H^+$
 - $\text{NO}_2^- + \frac{1}{2} \text{O}_2 \rightarrow \text{NO}_3^-$
 - Steps 1 and 2 performed by different organisms (e.g., *Nitrosomonas* and *Nitrospira*)
 - Require conservative enzymes such as ammonia monooxygenase (AMO)
 - Requires O_2 but can occur at low $[O_2]$
 - Reduces CO₂ to organic C
 - Maximum rate at ~150m in open ocean

Anoxic N transformations

• Denitrification (reduction of N):

- Organic C is oxidized to CO₂
- Requires 0 or low [O₂]
- Important organisms: heterotrophic bacteria
- Enzymes are highly conserved and membrane-bound (e.g., nitrate reductase)
- Largest sink of N in estuaries $(15-71\%) = 4-5X N_2$ -fixation

• Anammox (oxidation *and* reduction of N):

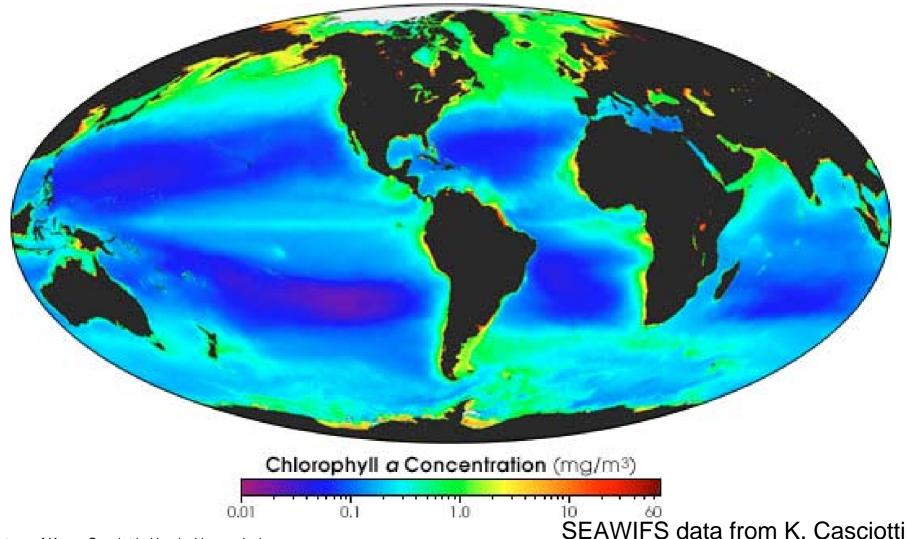
− $NH_4^+ + NO_2^- \rightarrow N_2 + 2 H_2O$

- Newly discovered process occurring in bacterial order *Planctomycetales*
- Potential cellular system: Anammoxosome
- Seen in anoxic zones of Black Sea, wastewater treatment plants
- Rates and prevalence unknown

Nitrogen fixation

- N₂-fixation (reduction of N):
 - N₂ \rightarrow NH₄⁺
- Requires high [Fe⁺²] and 0 or low
 [O₂] cells often have anoxic microzones to reduce local [O₂]
- Inhibited by high [NH₄+]
- Important organisms:
 Trichodesmium, Oscillatoria

Image removed due to copyright considerations. Please see: http://www.imagequest3d.com/catalogue/freshwater/pages/u013_jpg.htm


> Anthropogenic impact on N_2 fixation: Currently = natural fixation

N contamination in coastal env's

Image removed due to copyright considerations. Please see: http://www.msnbc.msn.com/id/4624359/

- Excess N in groundwater and rivers leads to eutrophication of coastal zones
- Destroys existing habitats (promotes anoxia)
- Particularly problematic in regions with septic systems

What does it all mean for the productivity of the ocean?

Courtesy of Karen Casciotti. Used with permission.

Productivity: Definitions

- Important value because it is major mechanism by which surface ocean and atmospheric [CO₂]'s are maintained at 2X lower than expected.
- Gross primary production (GPP):
 - Input of energy and organic matter into ecosystem
 - Equals all photosynthetic production
- Photoassimilation:
 - GPP rate of O_2 production associated with photorespiration
- Net primary production (NPP):
 - Rate of photoassimilation rate of dark respiration (heterotrophs)
- f ratio
 - New production / total production
- Depends on light (hv), nutrient concentrations, T (small)

Light

Image removed due to copyright considerations. Please see: http://www.lifesciences.napier.ac.uk/teaching/Eu/CDonly.gif Image removed due to copyright considerations. Please see:http://www-ocean.lbl.gov/seawifs/9712SeaWiFS.html