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6.436/15.085, Fall 2005. 

Background 

1.1 SETS 

A set is a collection of objects, which are the elements of the set. If A is 
a set and x is an element of A, we write x ⊇ A. If x is not an element of A, we 
write x / . A set can have no elements, in which case it is called the empty ⊇ A
set, denoted by Ø. 

Sets can be specified in a variety of ways. If A contains a finite number of 
elements, say x1, x2, . . . , xn, we write it as a list of the elements, in braces: 

A = {x1, x2, . . . , xn}. 

For example, the set of possible outcomes of a die roll is {1, 2, 3, 4, 5, 6}, and the 
set of possible outcomes of a coin toss is {H,T}, where H stands for “heads” 
and T stands for “tails.” 

More generally, we can consider the set of all x that have a certain property 
P , and denote it by 

x satisfies P}.{x | 
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(The symbol “ ” is to be read as “such that.”) For example, the set of even |
integers can be written as {k k/2 is integral}. Similarly, the set of all real |
numbers x in the interval [0, 1] can be written as {x 0 � x � 1}.|

If A contains infinitely many elements x1, x2, . . ., that can be enumerated in 
a list (so that the elements are in a one-to-one correspondence with the positive 
integers), we write 

A = {x1, x2, . . .}, 

and we say that A is countably infinite. For example, the set of even inte
gers can be written as {0, 2,−2, 4,−4, . . .}, and is countably infinite. The term 
countable is sometimes used to refer to a set which is either finite or countably 
infinite. A set which is not countable is said to be uncountable. 

If every element of a set A is also an element of a set B, we say that A is 
a subset of T , and we write A ∪ B or B ∞ A.† If A ∪ B and A ∪ B, the two 
sets are equal, and we write A = B. It is sometimes expedient to introduce a 
universal set, denoted by �, which contains all objects that could conceivably 
be of interest in a particular context. Having specified a context in terms of a 
universal set �, one then only considers sets A that are subsets of �. 

1.2 SET OPERATIONS 

The complement of a set A, with respect to a universal set �, is the set 
x /⊇ A} of all elements of � that do not belong to A, and is denoted by {x ⊇ � 

c

|
A . Note that �c = Ø. 

The union of two sets A and B is the set of all elements that belong to A 
or B (or both), and is denoted by A≥ B. The intersection of two sets A and B 
is the set of all elements that belong to both A and B, and is denoted by A≤ B. 
Thus, 

A ≥ B = {x x ⊇ A or x ⊇ B},| 

and

A ≤ B = {x x ⊇ A and x ⊇ B}.
| 

We will often deal with the union or the intersection of several, even in
finitely many sets, defined in the obvious way. In particular, if I is a (possibly 
infinite) index set, and for each i ⊇ I we have a set Ai, the union of these sets is 
defined as � 

Ai = {x x ⊇ Si for some i ⊇ I},|
i�I 

† In some texts, the notation A ∩ B is used to indicate that A is a subset 
of B, whereas in other texts, A ∩ B indicates that A is a proper subset of B, 
that is, A ∪ B and A = B.⊆
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and their intersection is defined as 

 

Si = x x ⊇ Si for all i ⊇ I}.{ |
i�I 

In case we are dealing with the union or intersection of countably many sets Sn, 
the notation ≥� Sn and ≥� Sn, respectively, is used. n=1 n=1

Two sets are said to be disjoint if their intersection is empty. More gen
erally, several sets are said to be disjoint if no two of them have a common 
element. A collection of sets is said to be a partition of a set A if the sets in 
the collection are disjoint and their union is A. 

The Algebra of Sets 

Set operations have several properties, which are elementary consequences of the 
definitions. Some examples are: 

A ≥B = B ≥A,

A ≤ (B ≥ C) = (A ≤B) ≥ (A ≤ C),


(Ac)c = A,

A ≥ � = �,


A ≥ (B ≥ C) = (A ≥B) ≥ C, 
A ≥ (B ≤ C) = (A ≥B) ≤ (A ≥ C), 

A ≤Ac = Ø, 
A ≤ � = A. 

Two particularly useful properties are given by De Morgan’s laws which 
state that �c � �c�� 

Ai = 

 

Ac
i , 


 
Ai = 

� 
Ac

i . 
i�I i�I i�I i�I 

To establish the first law, suppose that x ⊇ (≥i�I Ai)c . Then, x / i�I Ai, which ⊇ ≥
implies that for every i ⊇ I, we have x /⊇ Ai. Thus, x belongs to the complement 
of every Ai, and x ⊇ ≤i�I Ac

i . This shows that (≥i�I Ai)c i�I Ai
c . The reverse ∪ ≤

inclusion is established by reversing the above argument, and the first law follows. 
The argument for the second law is similar. 

1.3 NOTATION: SOME COMMON SETS 

We now take introduce the notation that will be used to refer to some common 
sets: 

(a) ⊂ denotes the set of all real numbers; 

(b) ⊂ denotes ⊂ ≥ {−→, →}, the set of extended real numbers. 

(c) Z denotes the set of all integers; 

(d) N denotes the set of natural numbers (the positive integers). 

Also, for any a, b ⊇ ⊂, we use the following notation: 
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(a) [a, b] denotes the set { a � x � b};x ⊇ ⊂ |
(b) (a, b) denotes the set { a < x < b};x ⊇ ⊂ |
(c) [a, b) denotes the set { a � x < b};x ⊇ ⊂ |
(d) (a, b] denotes the set { a < x � b}.x ⊇ ⊂ |

Our last set of definitions follows. 

(a) The Cartesian product of n sets A1, . . . , An, denoted by A1 ×A2 ×· · ·× 
An, or 

�n
i=1 Ai for short, is the set of all n-tuples that can be formed by 

picking one element from each set, that is, 

n� 
Ai = {(a1, . . . , an) ai ⊇ Ai, � i}.|

i=1 

The set A×A is also denoted by A2 . The notation An is defined similarly. 

(b) The Cartesian product 
��

Ai of an infinite sequence of sets Ai is defined i=1 
as the set of all sequences (a1, a2, . . .) where ai ⊇ Ai for each i. The simpler 
notation A� is used if Ai = A for all i. 

(c) The set of all subsets of a set A is denoted by 2A . 

(d) Given two sets A and B, AB stands for the set of functions from B to A. 

As defined above, a sequence (a1, a2, . . .) of elements of a set A belongs to 
A�. However, such a sequence can also be viewed as a function from N into A, 
which belongs to AN . Thus, there is a one-to-one correspondence between A� 

and AN . 
In the special case where A = {0, 1}, a sequence (a1, a2, . . .) can be iden

tified with a subset of N , namely the set { an = 1}. We conclude that n ⊇ N |
there is a one-to-one correspondence between {0, 1}�, {0, 1}N and 2N . 

1.4 SOME PROPERTIES OF SETS 

We collect here some useful properties. 
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A n A n . 

{0, 1}� 

A A 

⊂ 

Theorem 1. 

(a) The union of countably many countable sets is a countable set. 

(b) If is finite, of cardinality , then 2 has cardinality 2

(c) The Cartesian product of finitely many countable sets is countable. 

(d) The set of rational numbers is countable. 

(e) The set is uncountable. 

(f) The Cartesian product of infinitely many sets (with at least two ele
ments each) is uncountable. 

(g) If is infinite, then 2 is uncountable. 

(h) An interval of real numbers of the form [a, b], with a < b, is uncount
able, and the same is true for the set of real numbers. 

Proof: 

(a) Left as an exercise. 

(b) When choosing a subset of A, there are two choices for each element of A: 
whether to include it in the subset or not. Since there are n elements, with 
two choices for each, the total number of choices is 2n . 

(c) Suppose that A and B are countable sets, and that A = a1, a2, . . .},{
B = {b1, b2, . . .}. We observe that 

A×B = 
� �

{ai} ×B
�
. 

i=1 

For any i, there is a one-to-one correspondence between elements of B and 
elements of { Therefore {ai} × B is countable. Using part (i) of ai} × B. 
the theorem, it follows that A×B is countable. 

We continue by induction. We fix some k ∀ 2 and use the induction hypoth
esis that the Cartesian product of k or fewer countable sets is countable. 
Suppose that the sets A1, . . . , Ak+1 are countable. We observe that the set 
A1 × · · · ×Ak+1 is essentially the same as the set (A1 × · · · ×Ak) ×Ak+1, 
which is a Cartesian product of two sets. The first is countable, by the 
induction hypothesis; the second is countable by assumption. The result 
follows. 

(d) Left as an exercise. 

(e) Suppose, in order to derive a contradiction, that the elements of	{0, 1}� 

(each of which is a binary sequences) can be arranged in a sequence s1, s2, . . .. 
Consider the binary sequence s whose kth entry is chosen to be different 
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from the kth entry of the sequence sk . This sequence s is certainly an 
element of {0, 1}� but is different from each of the sequences sk , by con
struction. This means that the sequence s1, s2, . . . cannot exhaust all of 
the elements of {0, 1}� and therefore the latter set is uncountable. 

(f) Follows from (e). 

(g) Follows from (e) since 2A has at least as many elements as 2N , which can 
be identified with {0, 1}�. 

(h) Consider the set of sequences (a1, a2, . . .) with values in {0, 1}. This set 
is uncountable by part (v). To any sequence, we associate the number ��

. Note that every sequence results in a different number. Iti=1 ai3
−i

follows that the set of numbers of this form is also uncountable. This set 
of numbers is contained in [0, 1]; hence [0, 1] is uncountable. Any interval 
[a, b] has a one-to-one correspondence with the interval [0, 1] and is also 
uncountable. 

Let us take the idea in the proof of part (h) one step further. Let a = 
(a1, a2, . . .) be a binary sequence (with elements in {0, 1}). To any sequence a, 
we associate the real number 

�
ai

f(a) = 
� 

. 
2i 

i=1 

Given that every real number on the interval [0, 1] can be expressed in binary, it 
follows that f maps {0, 1}� onto [0, 1]. This mapping is not one-to-one because, 
for example, the sequences (0, 1, 1, . . .) and (1, 0, 0, . . .) map to the same number; 
that is, the real number 1/2 has two different binary expansions. It can be verified 
that this phenomenon occurs whenever we have a binary sequence that ends with 
an infinite string of ones, and only then. It follows that there is a one-to-one 
correspondence between the set [0, 1) and the set of sequences that do not end 
with an infinite string of ones. Furthermore, it can be checked that the set of 
excluded sequences is countable. We have therefore established a one-to-one 
correspondence between the set [0, 1) and a set of binary sequences (namely, the 
set of all binary sequences except for the excluded ones). This correspondence 
turns out to be useful in linking together some seemingly different probabilistic 
models. 

Notice that in the proof of part (h) we used 3i instead of 2i. By doing so, 
we avoided the difficulty of multiple expansions of the same number, but on the 
other hand the numbers so constructed do not cover the interval [0, 1). 

1.5 SEQUENCES AND LIMITS 

Formally, a sequence of elements of a set A is a mapping f : N � A. Let 
ai = f(i). The corresponding sequence is often written as (a1, a2, . . .) or {ak }
for short. 
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Given a sequence {ak } and an increasing sequence of real numbers {ki}, 
we can construct a new sequence whose ith element is aki . This new sequence 
is called a subsequence of {ak}. Informally, a subsequence of {ak } is obtained 
by skipping some of the elements of the original sequence. 

Definition 

(a) A sequence {xk} of real numbers (also called a “real sequence”) is said to 
converge to a real number x if for every � > 0 there exists some (positive 
integer) K such that xk − x < � for every k ∀ K.| | 

(b) A real sequence	 {xk} is said to converge to → (respectively, −→) if for 
every real number c there exists some K such that xk ∀ c (respectively, 
xk � c) for all k ∀ K. 

(c) If a real sequence converges to some x (possibly infinite), we say that x is 
the limit of xk ; symbolically, limk�� xk = x. 

(d) A real sequence {xk } is called a Cauchy sequence if for every � > 0, there 
exists some K such that xk − xm < � for all k ∀ K and m ∀ K.| | 

(e) A real sequence {xk} is said to be bounded above (respectively, below) 
if there exists some real number c such that xk � c (respectively, xk ∀ A) 
for all k. 

(f) A real sequence {xk} is called bounded if the sequence {|xk } is bounded |
above. 

(g) A real sequence is said to be nonincreasing (respectively, nondecreas
ing) if xk+1 � xk (respectively, xk+1 k) for all k. A sequence that is ∀ x
either nonincreasing or nondecreasing is called monotonic. 

The following result is a fundamental property of the real-number system, 
and is presented without proof. 

Theorem 2. Every monotonic real sequence converges to an extended real 
number. If the sequence is also bounded, then it converges to a real number. 

Definition 

(a) The	 supremum (or least upper bound) of a set A of real numbers, 
denoted by sup A, is defined as the smallest extended real number x such 
that x ∀ y for all y ⊇ A. 

(b) The	 infimum (or greatest lower bound) of a set A of real numbers, 
denoted by inf A, is defined as the largest extended real number x such 
that x � y for all y ⊇ A. 

(c) Given a sequence	 {xk } of real numbers, the supremum of the sequence, 
denoted by supk xk , is defined as sup{xk k = 1, 2, . . .}. The infimum of a | 
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sequence is similarly defined. 

(d) The	upper limit of a real sequence {xk }, denoted by lim supk�� xk , is 
defined to be equal to limm�� sup{xk .k ∀ m}|

(e) The	 lower limit of a real sequence {xk}, denoted by lim infk�� xk , is 
defined to be equal to limm�� inf{xk .k ∀ m}|

Remarks: 

(a) If a set or a sequence of real numbers has arbitrarily large elements (that 
is, no finite upper bound), then the supremum is equal to →. Similarly, if 
it has arbitrarily small elements (that is, no finite lower bound), then the 
infimum is equal to −→. 

(b) A strict application of the definitions shows that sup Ø = −→ and inf Ø = 
→. On the other hand, if a set is nonempty, then inf A � sup A. 

(c) The infimum or supremum of a set need not be an element of a set.	 For 
example, the infimum of the set {1/k k ⊇ N} = 0. |

(d) A sequence need not have a limit (e.g., consider the sequence xn = (−1)n. 
On the other hand, the upper and lower limits of a real sequence are 
always defined. To see this, let ym = sup{xk . The sequence k ∀ m}|
{ym} is nonicreasing and therefore has a (possibly infinite) limit. We have 
lim supm�� xk = limm�� ym, and the latter limit is guaranteed to exist, 
by Theorem 2. A similar argument applies to the lower limit. 

Let {xk} 

inf 
k 
xk � 

k�� 
xk � 

k�� 
xk � sup 

k 
xk. 

{xk}
k�� xk = k�� xk 

xk . 

Theorem 3. be a real sequence. 
(a) There holds 

lim inf lim sup 

(b) The sequence converges (to an extended real number) if and only 
if lim inf lim sup and, in that case, both of these 
quantities are equal to the limit of 

1.5.1 Convergence of vectors 

The next definition refers to convergence of finite-dimensional real vectors. 

Definition 

n(a) A sequence {xk} of vectors in ⊂ is said to converge to some x ⊇ ⊂n if the 
ith coordinate of xk converges to the ith coordinate of x, for every i. The 
notation limk�� xk = x is used again. 
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(b) A sequence of vectors is called a Cauchy sequence (respectively, bounded) 
if each coordinate sequence is a Cauchy sequence (respectively, bounded). 

(c) We say that some x ⊇ ⊂n is a limit point (or accumulation point) of 
na sequence {xk} in ⊂ if there exists a subsequence of {xk } that converges 

to x. 

n(d) Let A be a subset of ⊂ . We say that x ⊇ ⊂n is a limit point (or accumu
lation point) of A if there exists a sequence {xk }, consisting of distinct 
elements of A, that converges to x. 

⊂n 

⊂n 

⊂n ⊂n 

{xk } k�� xk k�� xk ) 

sequence {xk}. 

Theorem 4. 

(a) A bounded sequence in has at least one limit point. 

(b) A bounded sequence in converges if and only if it has a unique limit 
point (in which case, the limit point is also the limit of the sequence). 

(c) A sequence in converges to an element of if and only if it is a 
Cauchy sequence. 

(d) If is a real sequence and lim sup (respectively, lim inf
is finite, then it is the largest (respectively, smallest) limit point of the 

1.6 LIMITS OF SETS 

Suppose that we are given a sequence (A1, A2, . . .) of sets. There are various 
ways of defining what it means for the sequence to converge to some limiting set. 
The definitions that will be most useful for our purposes are given below. 

Definition 

(a) We define lim supn�� An as the set of all elements � that belong to in
finitely many of the sets An. Formally, 

lim sup An = 

 � 

An 

� 
. 

k=1 n=k
n�� 

(b) We define lim infn�� An as the set of all � that belong to all but finitely 
many of the sets An. Formally, 

lim inf An = 
� 
 

An 

� 
. 

n�� 
k=1 n=k 
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(c) We say that A is the limit of the sequence An (symbolically, An � A or 
limn�� An = A) if A = lim infn�� An = lim supn�� An. 
Note that a sequence of sets An need not have a limit, but lim supn�� An 

and lim infn�� An are always well defined. 

In order to parse the formal definition above, note that � ⊇ ≥� An if and n=k 
only if there exists some n ∀ k such that � ⊇ An. We then see that � belongs to 
the intersection ≤�

k=1 ≥� An if and only if for every k, there exists some n ∀ k n=k 
such that � ⊇ An, which is equivalent to requiring that � belong to infinitely 
many of the sets An. 

An An ∪ An+1 n
limn�� An ≥�

n=1An. 

An An ∞ An+1 n
limn�� An ≤�

n=1An. 

Theorem 5. 

(a) If is an increasing sequence of sets ( , for all ), then 
exists and is equal to 

(b) If is an decreasing sequence of sets ( , for all ), then 
exists and is equal to 

Definition The indicator function of a set S is defined by 

� 
1, if � ⊇ S,

IS (�) = 
0, if � / .⊇ S

It turns out that limn�� An = A if and only limn�� IAn (�) = IA(�) for 
all �. 


