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1 Introduction 

We first establish that probability measures have a certain continuity property. 
We then move to the construction of two basic probability models: (a) A 

model involving an infinite sequence of independent tosses of a fair coin; (b) A 
model in which the outcome is “uniformly distributed” over the unit interval 
[0, 1]. 

These two models are often encountered in elementary probability and used 
without further discussion. Rigorously speaking, however, one needs to be sure 
that these models are well­posed and consistent with the axioms of probability. 
In other words, one needs to establish that there exist probability spaces that 
correspond to these models. 

The complete proof of the existence of such probability spaces requires quite 
a bit of technical development (see [W]). In this handout, we go through the 
steps of this development, omitting most of the proofs. 

2 Continuity of probabilities 

Consider a probability model in which Ω = �. We would like to be able to 
assert that the probability of the event [1/n, 1] converges to the probability of 
the event (0, 1], as n →∞. This is accomplished by the following theorem. 

Theorem 1: Let F be a σ­field of subsets (called “ F­measurable sets”) of a 
sample space Ω. Let P be a function on F such that P(Ω) = 1, P(A) ≥ 0 
for every A ∈ F , and such that P(A ∪ B) = P(A) + P(B) whenever A, B are 
disjoint elements of F . [This latter property of P is called “finite additivity.”] 
The following are equivalent: 

(a) P is a probability measure (that is, it also satisfies countable additivity). 

(b) If Ai ∈ F is an increasing family of sets (Ai ⊆ Ai+1, for all i), and 
A = ∪∞i=1Ai, then limn→∞ P(Ai) = P(A). 

(c) If Ai ∈ F is a decreasing family of sets (Ai ⊇ Ai+1, for all i), and A = 
Ai, then limn→∞ P(Ai) = P(A).i=1∩∞

(d) If Ai ∈ F is a decreasing family of sets (Ai ⊇ Ai+1, for all i) and ∩∞ Aii=1

is empty, then limn→∞ P(Ai) = 0. 

Proof: That (b) follows from (a) is Lemma 5 in [GS]. To establish (c) from (b), 
just use de Morgan’s law. Statement (d) follows from (c) because it is just a 
special case in which A is empty. It remains to show that (d) implies (a). 
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Let Bi ∈ F be disjoint events. Let An = Bi. Note that An is a i=n∪∞
decreasing sequence of events and converges to the empty set. [Intuitively, any 
element of A1 belongs to some Bn, which means that it does not belong to 
An+1. So, every element of A1 is outside some An+1, so the intersection of the 
latter sets is empty.] 

Assume that property (d) holds. Using finite additivity for the finitely many 
(n + 1) sets B1, B2, . . . , Bn,∪∞i=n+1Bi, we have 

n ∞∞

P Bi = P(Bi) + P Bi . 
i=1 i=1 i=n+1 

This equality holds for any n. Now let n → ∞. The first term on the right­
hand side converges to ∞ P(Bi). The second term converges to zero, because i=1 

An = ∪∞ Bi converges to the empty set and statement (d) applies. q.e.d. i=n+1

This theorem tells us that when checking for countable additivity, it is 
enough to check that P behaves “continuously” along a decreasing sequence 
of events with empty intersection. 

The infinite coin toss model 

Consider an infinite sequence of fair coin tosses, with each toss being equally 
likely to result in heads or tails (recorded as 1 and 0, respectively). The 
sample space for this experiment is the set {0, 1}∞ of all infinite sequences 
ω = (ω1, ω2, . . .) of zeroes and ones. 

Let Fn be the set of events whose occurrence can be decided by looking at 
the results of the first n tosses. For example, the event {ω ω1 = 1 and ω2 = ω4}| �

n .belongs to F4 (as well as to Fk for every k ≥ 4). Let A be a subset of {0, 1}
Consider the event 

(ω1, ω2, . . . , ωn) ∈ A}.{ω ∈ {0, 1}∞ |

This event belongs to Fn and all elements of Fn are of this form, for some A. 
Let An = {ω ωn = 1}. The event A = ∪∞ An is the event that there is at i=1|

least one “1” in the infinite toss sequence. We would like to be able to assign a 
probability to the event A. Note that An ∈ Fn for all n, but A does not belong 
to Fn for any n. 

We define F0 = i=1Fi. So, an event B belongs to F0 if and only if it ∪∞
belongs to Fn for some n. In particular, the event A above does not belong to 

0, even though A is the union of events in F0. Thus, F0 is not a σ­field.F
Note: The union ∪∞i=1Fi = F0 is not the same as the collection of sets of the 
form ∪∞ Bi, for Bi ∈ Fi. For example, the set A discussed earlier is of the i=1

latter form but is not in F0. For a more concrete example, if F1 = , {b, c}}{{a}
and F2 = {{d}}, then F 2 = , {b, c}, {d}}, so that {b, c, d} is not in 1 ∪ F {{a}

2.F1 ∪ F
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We would like to have a probability model that assigns probabilities to all of the 
events in the collections Fn. This means that we need a σ­field that includes 
F0. But we would like to keep our σ­field as small as possible. (If it is too large, 
we may run into trouble when trying to assign a legitimate probability to all of 
the events in the field.) This is accomplished next. 

4 The σ­field generated by a collection of sets. 

Theorem 2: Given a collection C of subsets of Ω, there exists a σ­field F
[also denoted σ(C) and called the σ­field generated by C] which is the smallest 
possible σ­field that includes all elements of C. [That is, if G is any other σ­field 
and C ⊆ G, then F ⊆ G.] 

Proof: Consider all σ­fields G that contain C. [There is at least one such G, 
namely, the set of all subsets of Ω.] Let F be the intersection of all such G. 
[That is, a subset A of Ω belongs to F if and only if it belongs to every σ­field 
G such that C ⊆ G.] 

We first verify that F is indeed a σ­field. Fix any σ­field G that includes all 
of C. If A1, A2, . . . ∈ F , then Ai ∈ G, for all i. Since G is a σ­field, it follows that 

cAi ∈ G and that ∪∞ . Since such complements and unions belong to i=1Ai ∈ G
every σ­field G that includes the elements of C, it follows that such complements 
and unions are also in F , as required. Thus F is indeed a σ­field. 

If H is any other σ­field that contains C, then by definition F ⊆ H (since 
F was defined as the intersection of various σ­fields, one of which is just H). 
q.e.d. 

5 The extension theorem 

Theorem 3: Suppose that F0 is a field. [That is, ∅ ∈ F0. And if A,B ∈ F0, 
cthen A 0 and A ∪ B ∈ F0. A field is not necessarily a σ­field, as it is not ∈ F

closed under countable unions.] 
Suppose that P0 is a mapping from F0 to [0, 1] with the following properties: 

(i) P0(Ω) = 1 and (ii) if Ai ∈ F0 are disjoint sets such that ∪∞ 0, then i=1Ai ∈ F
P0(∪∞ = ∞ P0(Ai). [In other words P0 satisfies all the axioms required i=1Ai) i=1 

of probability measures, but is just defined on sets A in F0.] 
Then, there exists a unique probability measure P on (Ω, σ(F0)), which is 

consistent with P0 on F0 [that is, P(A) = P0(A) for every 0].A ∈ F
Remark 1: The general scheme is that we start with a collection F0 of “in­
teresting” sets for which probabilities are defined. We extend F0 to make it a 
σ­field, which is required in order to have a legitimate probability space. And 
we then assign probabilities to every event in the σ­field, in a manner which is 
consistent with the probabilities for events in F0. The theorem states that (un­
der the stated assumptions on F0 — it is a field — and on P0 — it is countably 
additive on F0), this is can be done, and it can be done in a unique way. 
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Remark 2: The proof of the extension theorem is long and involved. 
Renark 3: To apply the theorem one needs to verify countable additivity of 
P0 on F0. Alternatively, in the spirit if Theorem 1, one need only check that 
P0 is finitely additive, and that if Ai is a decreasing sequence of sets in F0 that 
converges to the empty set, then P(Ai) converges to zero. 

6 Back to the coin tossing model 

Recall that F0 was defined to be ∪∞n=1Fn. Thus, a set A is in F0 if and only 
if there is some n such that the occurrence of the event can be decided on the 
basis of the first n flips. It is easily checked that F0 is a field. [Indeed, if A ∈ F0, 

cthen A ∈ Fn for some n, and then A ∈ Fn for that same n, which implies that 
cA 0. Furthermore, if A,B ∈ F0, there is some m and n such that A ∈ Fm∈ F

and B ∈ Fn. This implies that A ∪B ∈ Fmax{m,n} ⊂ F0.] 
If A ∈ F0, then A is an event whose occurrence can be decided by the first 

n coin tosses, for some n. We let every n­toss sequence be equally likely (with 
probability 1/2n). It can be verified that this leads to a well­defined probability 
P0(A) for every A ∈ F0. [Verifying this fact involves the following: If a set A 
belongs to Fm and also to Fn, the probability P0(A) is defined in terms of the 
model that lets all n­toss sequences be equally likely, but also in terms of the 
model that lets all m­toss sequences be equally likely. Thus, we have to check 
that these alternative definitions are consistent, tht is, lead to the same value 
for P0(A).] It can be checked (though it is not trivial) that P0 is countably 
additive on F0. 

Then, the extension theorem implies that there is a well­defined probability 
space that agrees with the elementary coin tossing probabilities P0(A) for events 
A that relate to a finite number of tosses. It confirms that the intuitive process of 
an infinite sequence of coin flips can be captured rigorously within the framework 
of probability theory. 

7 The uniform distribution on the unit interval 

As with the coin tossing model, we now wish to define a uniform probability 
distribution on the unit interval. For simplicity of exposition, we consider the 
interval (0, 1] (that is, the left endpoint is missing). The uniform probability 
distribution is meant to correspond to P(A) = length(A). For this, we need 
a family of sets which is a σ­field, and for which “length” can be well­defined. 
Length is of course well­defined for nice and simple sets like (1/4, 1/2] (its length 
is 1/4), but what about more complicated sets? 

Let F0 consist of all sets that are unions of finitely many intervals of the 
form (a, b]. Given a set of the form A = (a1, b1] ∪ · · · ∪ (an, bn], where 0 ≤ a1 < 

n < bn ≤ 1 (which is the typical set in F0), we define b1 ≤ a2 < b2 ≤ · · · ≤ a
P0(A) = (b1 − a1) + · · ·+ (bn − an) which is its total length. 

The family F0 is a field. Indeed, for the set A above, its complement (in 
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(0, 1]) is (b1, a2]∪· · ·∪ (bn, 1] which is also in F0. And the union of two sets that 
are unions of finitely many intervals is also a union of finitely many intervals. 
(For example, if A = (1/8, 2/8] ∪ (4/8, 7/8] and B = (3/8, 5/8], then A ∪ B = 
(1/8, 2/8] ∪ (3/8, 7/8].) 

It turns out that P0 is countably additive on F0. This essentially boils down 
to checking the following. If (a, b] = ∪∞i=1(ai, bi], where the intervals (ai, bi] are 

∞disjoint, then b− a = i=1(bi − ai). This may appear intuitively obvious, but 
a formal proof is nontrivial. 

Let F = σ(F0), which is the smallest σ­field containing F0. Sets in F are 
called Borel sets and F is called the Borel σ­field. Using the extension 
theorem and the earlier assertions, it follows that there is a probability measure 
P which agrees with P0 for sets A that are in F0 (union of finitely many disjoint 
intervals). This probability measure is called the Lebesgue measure. 

By augmenting the sample space Ω to include 0, and assigning zero prob­
ability to it, we obtain a new probability model with sample space Ω = [0, 1]. 
(Exercise: define formally the sigma­field on [0, 1], starting from the σ­field on 
(0, 1]). 

Any set that can be formed by starting with intervals [a, b) using a countable 
number of set­theoretic operations (taking complements of previously formed 
sets, or forming countable unions of previously formed sets) is a Borel set. For 
example, single­element sets {a} are Borel sets, and so is the set of rational 
numbers in [0, 1). Furthermore, intervals [a, b] are also Borel since they are of 
the form [a, b) ∪ {b}, which is the union of two Borel sets. More generally, any 
set you may be able to construct will be a Borel set, as long as your construction 
is not “exotic.” 

Having defined Lebesgue measure (“length”) for Borel subsets of [0,1], it is 
straightforward to define the Lebesgue measure µn for Borel subsets of [n, n+1]. 
This leads to a construction of Lebesgue measure on Borel subsets of the real 
line. (To define the Borel subsets, we consider the σ­field generated by sets of 
the form (a, b]. We then define µ, by letting 

∞

µ(A) = µ A ∩ (n, n + 1] , A ∈ F , 
n=−∞ 

and verify that µ is indeed a measure (need to use the countable additivity of 
µn to establish the countable additivity of µ). 

Completion of a probability space 

Consider a probability space (Ω,F ,P). Suppose that A ⊆ B, B ∈ F , P(B) = 0. 
(Any set B with this property is called a null set. Note that in this context, 
“null” is not the same as “empty.”) If the set A is not in F , it does not have 
a probability assigned to it, but it would seem that one can safely assign zero 
probability to it. 

The first step is to augment our σ­field so that it contains all the subsets 
of null sets. This is done by letting F∗ = σ(F ∪ N ), where N is the collection 
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of all subsets of null sets, and then extending P in a natural manner to obtain 
a new probability measure P∗ that applies to all sets in F ∗. [This is also 
discussed briefly in pp. 14­15 of [GS].] The resulting probability space is said to 
be complete. It has the property that all subsets of null sets are included in 
the σ­field and are also null sets. 

When this completion is carried out for the model of the preceding section 
(Ω = [0, 1), F =Borel sets, P=Lebesgue measure), we obtain a new probability 
space with the same Ω, an augmented σ­field F ∗, and a measure on (Ω, F ∗). 
The sets in F ∗ are called Lebesgue measurable sets; the new measure still 
has the same name (“Lebesgue measure”). 

9 Interesting facts 

(a) There exist sets that are Lebesgue measurable but not Borel measurable, 
so in this context F is a proper subset of F ∗. 

(b) There are as many Borel measurable sets as there are points on the real 
line (this is the “cardinality of the continuum”), but there are as many 
Lebesgue measurable sets as there are subsets of the real line (which is a 
higer cardinality). 

(c) There exist subsets of (0, 1] that are not Lebesgue measurable. [W, pp. 
14­15, 192]. 

(d) It is not possible to construct a probability space in which the σ­field 
includes all subsets of (0, 1], with the property that P({x}) = 0 for every 
x ∈ (0, 1]. [B, pp. 45­46] 

10 References 

Essentially all of this discussion (plus proofs and much more) is in [B]. Reference 
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