MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Fall 2005 Notes for the 11/2 lecture

Definition 1: A random vector **X** has a *nondegenerate (multivariate) normal* distribution if it has a joint PDF of the form

$$f_X(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^n |V|}} \exp\left(-(\mathbf{x} - \mu)V^{-1}(\mathbf{x} - \mu)^T/2\right),$$

for some real vector μ and for some positive definite matrix V.

Definition 2: A random vector \mathbf{X} has a *(multivariate) normal* distribution if it can be expressed in the form

$$\mathbf{X} = D\mathbf{W} + \mu,$$

for some matrix D and some real vector μ , where **W** is a random vector whose components are independent $\mathcal{N}(0,1)$ random variables.

Definition 3: A random vector **X** has a *(multivariate) normal* distribution if for every real vector \mathbf{a}^T , the random variable $\mathbf{a}^T \mathbf{X}$ is normal random.

Theorem: Suppose $\mathbf{X} = (X_1, \dots, X_n)$ is multivariate normal, in the sense of Definition 2.

- (a) For every i, X_i is normal, with mean μ_i .
- (b) We define the *covariance matrix* $\operatorname{Cov}(\mathbf{X}, \mathbf{X})$ of \mathbf{X} to be a matrix whose *ij*th entry is $\operatorname{Cov}(X_i X_j)$. Then, $\operatorname{Cov}(\mathbf{X}, \mathbf{X}) = \operatorname{DD}^{\mathrm{T}}$.
- (c) If C is a $m \times n$ matrix and **d** is a vector in \Re^m , then $Y = C\mathbf{X} + d$ is multivariate normal in the sense of Definition 2, with mean $C\mu + \mathbf{d}$ and covariance CDD^TC .
- (d) If $|D| \neq 0$, then **X** is nondegenerate multivariate normal in the sense of Definition 1, with $V = DD^{T}$.
- (e) The joint CDF F_X of **X** is completely determined by the mean and covariance of **X**.
- (f) The components of \mathbf{X} are uncorrelated (diagonal covariance matrix) if and only if they are independent.
- (g) If

$$\begin{bmatrix} X \\ Y \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} \mu_X \\ \mu_Y \end{bmatrix}, \begin{bmatrix} V_X & V_{XY} \\ V_{YX} & V_Y \end{bmatrix}, \right)$$

and $|V_Y| \neq 0$, then:

- (i) $\mathbf{E}[\mathbf{X} \mid \mathbf{Y}] = \mu_X + V_{XY}V_{YY}^{-1}(\mathbf{Y} \mu_Y).$
- (ii) Let $\tilde{\mathbf{X}} = X \mathbf{E}[X \mid Y]$. Then, $\tilde{\mathbf{X}}$ is independent of \mathbf{Y} .
- (iii) $\operatorname{Cov}(\tilde{\mathbf{X}}, \tilde{\mathbf{X}} \mid \mathbf{Y}) = \operatorname{Cov}(\tilde{\mathbf{X}}, \tilde{\mathbf{X}}) = V_X V_{XY} V_{YY}^{-1} V_{YX}.$