
Week 2 notes: Strain 

Fall 2005 

1	 Reading assignment 

Twiss and Moores: chapter 15, in particular, pages 292 � 302. 
Discussion of speci�c special types of strain (pure shear, simple 
shear) begin on page 303. Pages 304 � 310 deal with progressive 
strain, and are useful background material for the lab. 

W. Means (1976) Stress and Strain is a great text, very clear, 
well written and reads easily. J. Ramsay and M. Huber (1983) 
The Techniques of Modern Structural Geology, Volume 1: Strain 
Analysis is amazingly detailed, with many, many examples of de-
tailed strain analysis. It can, however, be "a bit much". 

2	 Strain I: displacement, strain and ter-
minology 

Given enough stress, a material responds by deforming. We dis-
tinguish: between rigid body deformations and non-rigid body 
deformations. The �rst includes translation and rotations of a 
body. The second includes distortion and dilation. Other im-

portant distinctions are: continuous vs. discontinuous strain 
and homogenous vs. heterogeneous strain. Whether strain is 
homogenous or heterogenous is often a function of the scale of 
observation. Also, when strain in natural systems is analyzed, a 
common approach is to identify structural domains wherein the 
strain is continuous and sometimes homogenous. The point of 
doing so is that we can bring the tools of continuum mechanics 
� the physics of continuous deformation. 

2.1 Measurement of strain 

1. Changes in the lengths of lines 

2. Changes in angles 

3. Changes in areas or volumes 

Changes in line length: 

3 important measures: 
Elongation 

Δl lf 
e ≡ = 

lf − li 
= − 1 

li li li 
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Stretch 
lf 
= 1 + eS ≡ 

li 

Quadratic elongation 

λ ≡ S2 = (1 + e)2 

So λ = 1 means no change in length; λ < 1 re�ects shortening 
and λ > 1 is extension. 

Changes in angles 

1. Consider 2 originally perpendicular lines. The change in 
angle between those lines is 

90− α = ψ ≡ angular shear 

2. Consider a particle on the y-axis. Measure displacement 
at some distance y from the origin, in the x direction: 

x 
= γ ≡ shear strain 

y 

Note that: 
γ = tanψ 

Change in volume (or area) 
The dilation is similar to the de�nition of elongation: 

Δ ≡ 
Vf − Vi ΔV 

= 
Vi Vi 

Note that all these measurements take the undeformed state 
as the point of reference. It is equally feasible to take the length 
or angles in the deformed state as the reference state. There are 
no particularly good reasons for doing one or the other, neither 
is good for large strains. Alternatively, the in�nitesimal strain is 
often a very useful concept, corresponding to the strain accrued 
in a vanishingly small instant of deformation. 

The strain ellipsoid 

In a deforming body, material lines will rotate and change shape. 
We want to be able to characterize the rotation and elongation 
of any arbitrary line. A circle (sphere in 3D) allows us to keep 
track of all possible orientations of lines. As it turns out, any 
homogenous strain turns a circle into an ellipse and a sphere into 
an ellipsoid. 
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Consider a circle of unit radius, deformed into an ellipse ori-
ented such that the major and minor semi-axes are parallel with 
the coordinate axes. The elongation, stretch and quadratic elon-
gation of the major semi-axis are given by: 

lf x − 1 
ex = 

1 
Sx = 1 + ex = lf x 

λx = l
2 
f x 

Alternatively, lf x =
√
λx . Similarly, lf z =

√
λz . Since the equa-

2 2 
tion of an ellipse is just xa2 +

z
b2 = 1, where a and b are the lengths 

of the semi-axes, the equation of the strain ellipse is just 

2 2x z
+ = 1 

λx λz 

In three dimensions: 

2 2 2x y z
+ + = 1 

λx λz λz 

More generally, the semi-axes of the strain ellipse (ellipsoid in 
3D) are the principal strains, analogous to the principal stresses 
we saw earlier. The length of the semi-axes (S1, S2, S3) are the 
magnitudes of the principal strains. One of the features of the 
principal strains is that, not only are they orthogonal in the de-
formed state, but the same lines will be orthogonal in the unde-
formed state. The strain ellipsoid can have various shapes, corre-
sponding to uniaxial, biaxial or triaxial strain. Circular sections 
through biaxial strain ellipses will be undistorted; in triaxial strain 
they will be distorted, though equally shortened or lengthened in 
all directions. 

If you're lucky, the rock body you are looking at will contain 
initially circular or spherical markers. Deformation will turn these 
into ellipses, whose long and short axes are the principal strain 
axes. Examples of reasonably nice spherical strain markers are 
ooids or (perhaps) pebbles in a conglomerate. The spherical 
cross sections of worm tubes can also be used in this way. Initially 
elliptical or ellipsoidal markers can also be used to characterize 
strain, though this is more complicated. 

Displacement vector �elds and strain 

One approach to analyzing strain is to keep track of particle dis-
placements. The position (x, y) of a particle before deformation 
to its position (x �, y �) can be related by a set of coordinate trans-
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formation equations of the form: 

x � = ax + by 

y � = cx + dy 

If a, b, c, d are constants, then the strain is homogenous. Two 
particularly important strain regimes are simple shear and pure 
shear and their coordinate transformation equations, expressed 
in matrix notation are: 

1 γ k 0 
0 1 0 1/k 

Deformation is usually not instantaneous: strains accumulate 
over time. One kind of strain can follow one another. Mathemat-

ically, this is equivalent to multiplying the strain matrices. Note 
that matrix multiplication is not commutative, so, for example, 
simple shear followed by pure shear does not yield the same �nal 
result as pure shear followed by simple shear. 

If the orientations of the principal strain axes do not rotate 
during deformation, then the strain is said to be irrotational. 

Mohr circles for strain I : In�nitesimal 
strain 

The in�nitesimal strain is a useful concept that can be thought 
of as representing the instantaneous material response to stress. 
The accumulation of in�nitesimal strain increments over geolog-
ical time results in the deformation that the geologist observes 
and tries to understand in the outcrop � known as the �nite 
strain. For our purposes we can consider "pretty small" strains 
� say, less than 1% � to be in�nitesimal. For the purposes of 
deriving the Mohr circle equations, this case also allows the use 
of small angle approximations, in particular, γ = ψ. 

As with stress, we want a Mohr circle construction that al-
lows us to read o� (1) the elongation (for in�nitesimal strain, 
call it �) and (2) the shear strain (γ that a�ect any line of any 
given orientation. The principal strains are denoted �1, �2, �3. A 
fairly tedious derivation (for details, you might check out Hobbes 
(1976)) yields: 

� = 
�1 + �2 

+ 
�1 − �2 

cos 2α 
2 2 � � 

γ 
= 

�1 − �2 
sin 2α 

2 2 

Note that this Mohr circle is drawn in � vs. γ/2 coordinates. 
Examination of the Mohr circle for in�nitesimal strain yields the 
following important relations: 
1. There are two lines that experience the maximum shear strain, 
and they are located at 45◦to the principal strain axes. 
2. The maximum shear strain is given by γ/2 ± (�1 − �2)/2, i.e. 
γ ± (�1 − �2). 
3. Any 2 lines perpendicular to one another are 180◦apart on the 
Mohr circle, so they su�er shear strains equal in magnitude but 
opposite in sign. 
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6 Mohr circles II: Finite strain 

As the result of �nite strain, lines are lengthened or shortened 
and the angles between intersecting lines are usually changed. 
Considering a unit circle deformed into an ellipse whose axes are 
parallel with the coordinate frame, we can derive relationships 
that track the elongations and rotations (shear strains) for any 
line. As you might expect, a Mohr circle construction is the 
ticket to the big time. The derivations of these are so tedious 
that even Ramsay and Huber relegate them to an appendix (cf. 
Ramsay and Huber, appendix D if you can't help yourself... I 
myself have wasted a greater part of my mortal existence on these 
than I would really care to admit ....). Two separate constructions 
are available: one identi�es lines according to the angles they 
make with the principal strain directions in the "unstrained state" 
� this is of somewhat limited use since we rarely know what 
the orientations of lines used to be. The other deals with the 
orientations in the strained state. 

6.1 Unstrained state reference frame 

The unstrained reference frame refers back to the pre-deformation 
orientation of a line P . The line makes an angle θ with the prin-
cipal strain axes. Upon deformation, it su�ers an elongation and 
rotates into a new position P � (in general, we will use primes 
to distinguish the reference frames) making an angle θ� with the 
principal strain directions. The elongation and shear strain of an 
arbitrary line are given by 

(λ1 + λ2) (λ1 − λ2)
λ = + cos 2θ 

2 2 
λ1 − λ2

γ = sin 2θ 
2
√
λ1λ2 

Note: these fail to produce a circle (instead, you get a Mohr 
ellipse) unless 

√
λ1λ2 = 1, i.e. there is no dilation. 

6.2 Strained reference frame 

Usually, we are confronted with good rocks gone bad, and so the 
angles we measure are those of lines in the strained state, i.e. we 
measure θ�, not θ. Conversion between the two reference frames 
can be done using: 

1/2
sin θ = λ1/2 sin θ�/λ2 

1/2 
cos θ = λ1/2 cos θ�/λ1 

and pulling a little de�nitional slight of hand: 
1. De�ne a new strain parameter γ� = γ/λ. 
2. Use the reciprocal quadratic extensions γ� = 1/γ1 and1 

γ� = 1/γ2.2 

The Mohr equations become: 

2 λ�
λ� = 

λ1
� + λ� 1 − λ2

�

2 
− 

2 
cos 2θ� 

γ� = 
λ2
� − λ1

�
sin 2θ� 
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