12.119: Concentration determination by isotope dilution

Most concentration determinations that are done by thermal ionization mass spectrometry use the technique of isotope dilution. The basic principle of isotope dilution is that a known amount of a spike (or tracer) of known isotopic composition and elemental concentration is added to a sample of unknown isotopic composition and unknown element concentration. From the measured isotopic composition of the spiked sample, the isotopic composition and elemental concentration of the unknown can be calculated. From the viewpoint of arithmetic, it is a simple mixing problem:

Atoms in sample + atoms in spike = atoms in mixture

The "atoms in spike" is known from previous measurements and the weight of the spike; the "atoms in mixture" is the quantity measured in the mass spectrometer, so that the unknown is "atoms in sample." The only kicker in the works is that we measure ratios of atoms in the mass spectrometer, because they are easier to measure, and have fewer uncertainties than measurements of "absolute" numbers of atoms. Correspondingly, the arithmetic is complicated by having to deal with ratios.

In our laboratory, we use two different Pb spikes - a 205 Pb spike and a 208 Pb spike. Here are the data for the spikes:

	²⁰⁴ Pb	²⁰⁵ Pb	²⁰⁶ Pb	²⁰⁷ Pb	²⁰⁸ Pb					
MIT 1M:	0.0001,0,1		0.009715	0.00703748	0.015377					
Data in picomoles/gram of spike										
MIT 208:	3.7620e-6		0.00767233	5.5536e-5	155.093136					
Data in picograms/milligram of spike										
Atomic weights:										
.	203.97302	204.9737	205.97444	206.975872	207.976627					

The data for samples run with the two spikes are (these are fractionation corrected, atomic ratios):

Т 2545	²⁰⁶ Pb/ ²⁰⁴ Pb 18.702	²⁰⁷ Pb / ²⁰⁴ Pb 15.644	²⁰⁸ Pb/ ²⁰⁴ Pb 38.464	²⁰⁶ Pb / ²⁰⁵ Pb 45041.035	sample wt. (g) 0.1420	MIT-1M spike wt. (g) 0.0105
Ch4 EtOH IC Ch4 EtOH ID	²⁰⁶ Pb/ ²⁰⁴ Pb 18.584	²⁰⁷ Pb / ²⁰⁴ Pb 15.594	²⁰⁸ Pb/ ²⁰⁴ Pb 38.250	²⁰⁸ Pb/ ²⁰⁶ Pb 29.963841	sample wt. (g) 0.3138 0.0961 ¹	MIT 208 spike wt. (g) extracted wt. (g) 12.3029 0.0219

¹ Of the total extracted weight in the line above, this is the weight of the aliquot I spiked.

Your task is to calculate the concentration of Pb in the two samples.

Due date: March 29, 2011

MIT OpenCourseWare http://ocw.mit.edu

12.119 Analytical Techniques for Studying Environmental and Geologic Samples Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.