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V. Evolution of Depositional Alluvial River Profiles 

A. Recap: Essentials from Flow Mechanics and Sediment Transport 

1. Conservation of Momentum, Steady Uniform Flow 
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" -- important in flow around bends, over point bars, 

across abrupt changes in channel slope or width 

2. Velocity Profiles 
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3. Sediment Transport 

Shield’s Stress 
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Non-Dimensional Sediment Transport 
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B. Exner Equation (Erosion Equation): Conservation of Mass (Sediment) 

Derivation of conservation of mass – the erosion equation 

SKETCH: Control reach, width Δy, length Δx, qs_in at x, qs_out at x + Δx 

If more sediment comes in than out, bed elevation goes up – deposition 

If more sediment goes out than in, bed elevation goes down – erosion 

per unit time Δt, sediment volume in = qs_inΔtΔy 

per unit time Δt, sediment volume out = qs_outΔtΔy 

Change in sediment volume per unit time 
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Change in bed volume per unit time 
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For change in bed elevation, divide through by ΔxΔyΔt: 
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Note from basics of sediment transport that 

Accordingly, we can expand the erosion equation using the chain 

rule: 
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Thus we can see immediately that erosion will occur in regions of 

increasing shear stress (i.e., not necessarily in regions of high 

shear stress) and deposition will occur in regions of decreasing 

shear stress (not necessarily low shear stress). 

C. Channel Width Closure 

Problem: all relations above derived in terms of flow depth, shear stress,

discharge per unit width, but channel width changes downstream with: changing 

Qw, changing slope (S), changing D50, changing vegetation, etc.:

To solve problem of alluvial river profile evolution we must specify how channel

width evolves downstream.


1. Hydraulic Geometry (Leopold et al, 1950s) 

Empirical: 
5.0

Qw!

2. Equilibrium (Threshold) Straight, Gravel-bed Channels (Parker, 1978) 

Concept: channel will widen until banks are just stable, just below the 

threshold for motion (erosion = widening) 

SKETCH 
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Critical or Equilibrium Condition: ; ( )
c**
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Summary Condition at Bankfull flow: Mobile bed, stable banks, generally 

low transport stage


Thus, for given Qw, D50, S, Cf, Width 
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(w) increases downstream such that

h reduces to establish 


3. Sandy, Meandering Channels 

Theory not well developed, but some evidence indicates near constant

shield’s stress:
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Otherwise, generally the assumption that 
c**

!! >> is often reasonably 

accurate. 

D. Relations for Alluvial Plain Slope (Paola, 1992; with corrections) 

DEFINITION SKETCH 
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1. Conservation of Mass (Water) 
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Note qv denotes water discharge per unit valley width, as opposed to q which we 

have used previously for water discharge per unit channel width. 

Parallel drainage: Vw = constant; no lateral inflows of water or sediment, no loss 

of water to infiltration or evaporation. 
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3. Conservation of Momentum 
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4. Sediment Transport (Bedload = gravel) 
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Dimensional sediment flux per unit channel width: 
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5. Channel width closure:


Braided, gravel-bedded channel --
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6. Relation for sediment flux using channel closure rule(s) 
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Write this relation in terms of slope and water discharge per unit valley width, qv 
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Using two relations for conservation of momentum: 
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Substitute into relation for sediment flux (per unit channel width): 
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No dependence on grainsize? Why? -- Channel width closure 

accounts for grainsize, ie. channel width adjusts according to 

grainsize. 

Note qs is sediment transport per unit channel width. 

7. Conservation of Mass (sediment) (from above) 
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recall qsv is sediment transport per unit valley width 
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Assume: constant Vw, Cf, q (and note β is not constant, but cancels out) 

(diffusion equation) 

Effective Diffusivity: 
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Sediment inflow (delivered from upstream erosional source area) is Qso. 

Steady-state condition: 
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Thus sediment flux per unit valley width qsv is constant at steady state: 
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Thus inlet slope must be (under all conditions): 

( )( ) ( )

Q

Q

CcCqcw

Q

wK

Q

KV

Q

x

z
so

fw

s

fvw

sso

f

so

fw

so

x

!
!

"

#

$
$

%

& '
'=

'
'='='=

(
(

=

)

)))))*
* 88

0

where the term in brackets collects physical constants. Inlet slope is linearly 

dependent on the ratio Qso/Q. Note that valley width and sediment porosity do not 

influence the inlet slope. 

Steady state condition: 
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(linear profile, slope = inlet slope) 

SKETCHES 

8 



12.163/12.463 Surface Processes and Landscape Evolution 

K. Whipple September, 2004 

8. Effect of subsidence (σ) on steady-state profile 
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At steady state, the rate of aggradation must balance subsidence, here uniform in 

space. 

Boundary conditions 
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And since at steady state, deposition must balance subsidence, the total volume 

rate of deposition ((Qso – Qse)/(1-λp)) divided by alluvial plain area (LVw) equals 

the subsidence rate: 
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Another way to think about this is to ask, what sets the length of the alluvial plain 

(L)? The answer is obtained by solving the above relation for L. Basically the 

total volume rate of deposition, valley width, and subsidence rate set the length of 

the alluvial plain, or the distance of gravel progradation into a depositional basin: 
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; for the case of gravel progradation, Qse = 0 would be the 

condition of interest – all gravel is deposited in the gravel wedge. 

So we have resolved the controls on the size of the system, and the pattern of 

Qs(x) down the system. Now we can ask, ‘what sets the system slope and 

longitudinal profile?’ In the case of zero aggradation (same as Qse = Qso), the 

alluvial plain had a constant slope, linear profile. Intuitively, in the case of 

subsidence balanced by aggradation, will the profile be concave-up or convex-up? 

Recall that sediment flux declines linearly down the system in this case. For the 

case of a gravel plain, Qse = 0 we have: 
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From above, we know that locally the slope is linearly dependent on sediment 

flux: 
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; thus substituting the relation for Qs(x): 
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Naturally, we can find the same result by direct integration of the conservation of 

mass (or erosion-transport) equation: 

Steady state condition 
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Concave-up profile with slope decreasing linearly from the inlet (i.e., a 

parabola) at a rate determined by the fluvial diffusivity, subsidence rate, 

sediment porosity, and the channel width to valley width ratio. Note that 

the limiting case of 100% porosity converges on the zero deposition 

(subsidence) case, as it must. 
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9. Effect of Uplift on Steady-State Profile 
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Directly analogous, opposite sign on source term, so jump to solution: 
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Convex-up profile with slope increasing linearly from the inlet at a rate 

determined by the fluvial diffusivity, uplift rate, sediment porosity, and the 

channel width to valley width ratio. 

Note this result is unrealistic in that an incising system will dissect the alluvial 

plain into a dendritic drainage pattern – the result here assumes the channel 

sweeps back and forth to maintain a one-dimensional form – a tilting plain – as is 

the case for an aggradational system. We will discuss incising systems later. 

10. Adaptation for Alluvial Fans at Steady-state (aggradation = uniform subsidence) 

Assume radially symmetrical fan, r is radial position (from 0 to L), fan is pie-

shape with apex angle θf. 
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Boundary conditions are: 

; 

Gives 

sors
QQ =

=0 seLrs
QQ =

=

; non-linear decline from Qso to Qse because fan 

Area grows with square distance downfan, r
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Again, at steady state deposition must balance subsidence, the total volume rate of 

deposition ((Qso – Qse)/(1-λp)) divided by alluvial fan area (θf L
2
/2) equals the 

subsidence rate: 
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Solving for steady-state fan size: 
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So we have resolved the controls on the size of the system, and the pattern of 

Qs(r) down the system, and how these differ due to the expanding geometry of the 

alluvial fan. Now we can ask, ‘what difference does the fan geometry make to the 

longitudinal profile?’ Intuitively, will the profile be more or less concave than the 

alluvial plain? Recall that sediment flux declines with the square of distance 

down the fan in this case. For the case of a gravel fan merging with a playa for, 

for instance, Qse = 0 we have: 
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From above, we know that locally the slope is linearly dependent on sediment 

flux: 

; (no difference from alluvial plain case) thus substituting the 

relation for Qs(r): 
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Thus, the concavity of alluvial fans is quite distinct from that of alluvial plains: 

near the fan-head the slope remains close to constant (linear profile) as Qs(r) 

decreases slowly at first, then on the lower fan slope decreases rapidly to zero. 
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11. System Response Time to Perturbation 

Response time is well known for Diffusion equation (see Paola et al. 1992) 

(Effective Diffusivity) 
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= ; where L is system (alluvial plain) length. 

View graphs: System response to slow (T > Teq) and fast (T < Teq) perturbations 

(Figures from Paola et al., 1992). 
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