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VII. Bedrock Channels: Incision Rates and Longitudinal 
Profiles 

Bedrock Channels are actively incising into rock. Incision rate is set by the ability of 

flows (and sediment tools carried by the flows) to abrade or “detach” bedrock. In this 

way they are distinct from transport-limited channels, though in many mixed bedrock-

alluvial channels (which are common), this distinction can be blurred. 

Transport capacity: 

Sediment Supply (Flux): 

very small 

Erosion is governed by ability to “detach” or incision into bedrock, not limited by 
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Therefore, erosion is highest where shear stress is highest, rather than where it is 

increasing most rapidly. 

See Whipple, 2004, Annual Reviews in Earth and Planetary Sciences, review paper for 

background and details. 

A. Derivation of a Simple (Generic – not process-specific) 

Detachment-Limited Incision Model 

Concept: 

Shear Stress model: erosion proportional to shear stress to a power (all below directly 

analogous in case of unit stream power): 

)(
a

c

a

bbkE !! "=
a

cbbkE )( !! "=

( )seb qfkk =

( )sqf

or 

; ke is erosivity at optimum sediment load. 

SKETCH of Hypothetical function 
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Conservation of Mass (water): 

hWuQ =

Conservation of Momentum (steady uniform flow): 

ghSb !" =

2
uC fb !" =

Goal: write τb in terms of slope, discharge.


Use conservation of mass (water), substitute into friction relation:


( ) 22 !
= WhQC fb "#

Solve shear stress equation for flow depth, substitute into above gives: 

( ) 222233
SWQCg fb

!
= "#

( ) 32323132
SWQCg fb !" =

Can be written as: 

where 

( ) !"
# SWQktb =

2!!" ft Cgk =
3
2

=!
3
2

=!

5
3

=!
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=!

; , (Generalized Darcy-Weisbach friction relation); 

, (Manning) 

Channel Width Closure 

Empirical relation for hydraulic geometry (channel width closure used if direct 

measurements of W not available): 

; b ~ 0.5 typical in both alluvial and bedrock rivers. 

Substitute into relation for shear stress: 

b

wQkW =
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( ) !""
# SQkk

b

wtb

$$
=

1

Drainage Basin Hydrology 

For application to ungauged rivers, use empirical relation for basin hydrology: 

Q = kqA
c

0.7 ≤ c ≤ 1.0 typical (c < 1 reflects: storm size < basin size, short storm duration, non-

uniform ppt, groundwater losses, storage in floodplains, etc) 

Combine Above to Derive the Stream Power Incision Model 

Substitute into relation for shear stress: 

( ) ( ) !"""
# SAkkk

bcb

qwtb

$$$
=

11

Combine these for case bc !! << in floods of interest ( ) a

bse qfkE != gives the well-

known “Stream Power River Incision Model”: 

nm
SKAE =

an != ; )1( bacm !="

( ) a

t

ba

q

a

wse kkkqfkK
)1( !!

=
""

)1( bc
n

m
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"

#
; 1=

!

"
-for Generalized Darcy Weisbach friction relation 

m/n ~ 0.5 characteristic of broad range of fluvial incision processes that scale with shear 

stress (or unit stream power) raise to some power (a). If erosion process is linear in shear 

stress (a = 1), expected exponents in the stream power incision model are: 

m ~ 1/3, n ~ 2/3. 

Empirical Field Support 

Howard and Kerby, 1983, GSA Bulletin: Empirical study of river incision into weak 


rocks in badlands over ~20 years.


68.44.11.0 SA
dt

dz
= ; R

2 
= .85 (50 data points)


95% confidence intervals: 0.06 < K < .21; .38 < m < .51; .58 < n < .78


Why Stream Power? What is Stream Power? Unit Stream Power? 
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Both bedrock channel incision and sediment transport have also been proposed to scale 

with the rate of potential energy expenditure per unit bed area (the so-called “unit stream 

power”, ω): 

a

bkE !=

Stream power is the rate of potential energy expenditure per unit length of channel. 

Difference in potential energy between points along a stream is: 

zVgPe !=! "

So rate of change of Pe per unit channel length (Δx) is: 

where we have noted that 

!==
"

"
=
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"
=
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"
gQS
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z
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xt

zVg

xt

Pe ##
#

tVQ != and Ω is used for Stream power per unit length. 

Stream power per unit bed area (ω) is thus: 

W

gQS

W

!
" =

#
=

Unit stream power can in fact be directly related to shear stress: 

uughS
W

hWSug

W

gQS
b!"
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# ====

Also, recall that average velocity is directly related to bed shear stress: 

2
uC fb !" = or 

f
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"
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Thus we have: 
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Therefore, an erosion rule that erosion is a power function of unit stream power can be 

written, using the hydraulic geometry and basin hydrology from above as: 

a

bkE !=

nm
SKAE =

an = ; )1( bacm !=

( ) aaba

q

a

wse gkkqfkK !
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=
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)1( bc
n

m
!=

As before, m/n ~ 0.5. If erosion process is linear in unit stream power (a = 1), expected 


exponents in the stream power incision model are:


m ~ 1/2, n ~ 1.


Thus in conclusion, erosion linear in unit stream power is essentially identical to erosion


proportional to shear stress raised to the 3/2 power; in other words the difference is all in


the value of the exponent a in the basic postulate:
 ( ) a

bse qfkE != . 

B. Conservation of Mass (Rock): Profile Evolution 

Now we can consider conservation of mass of the rock to write an evolution equation for 

a bedrock channel: 

nm
SKAUEU

t

z
!=!=

"

"

, U = E 0=
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t

z

nm
SKAU =

At steady state such that , such that we can write: 

this can be solved directly for the steady-state river slope: 

n

m
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Thus a power-law relation between local channel slope and upstream drainage area is 

predicted: a straight line in plot of logS vs. logA with slope –m/n (concavity index) and 

intercept (U/K)
1/n 

(steepness index) (this is true only if U, K, m, and n are spatially 

uniform … what might happen to profile concavity where K = K(qs) = K(x)?) 

Steady-State Longitudinal Channel Profile 

By integrating the above relation we can derive an equation for the longitudinal profile of 

the river at steady state: 
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To integrate we need to write A in terms of along-stream distance, x. A robust empirical 

relation known as Hack’s law (Hack, 1957) allows this: 

h

a xkA = ; where ka ~ 6.7 and h ~ 1.67 are typical values. 

Substituting in and setting up to integrate both sides: 
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To find constant of integration, set baselevel z = z(L) at x = L 
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where xc (~ 200-1000m typical) is the distance from the divide at which fluvial processes 

become dominant over hillslope processes (soil creep, landslides, etc) and debris flow 

scour. 

Fluvial Relief of Drainage Basins 

Fluvial Relief is thus given by: 
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Note that all except U, K are geometrical variables, so convenient to simplify to: 
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where β is expected to vary weakly with tectonic, lithologic, and climatic conditions and 

is given by: 
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Channel Profiles and Fluvial Relief – Empirical Geometric Constraints 

The above all derived for steady-state conditions where bedrock channel incision is 

described by the stream power model and U, K, m, and n are uniform in space (same 

tectonics, climate, lithology, and erosion process) – a fairly restrictive set of assumptions. 

However, it is commonly observed that river profiles follow a power-law relation 

between channel gradient and upstream drainage area: 

!"
= AkS s

where ks is the steepness index and θ is the concavity index. 

Thus the above derivations for profile form and fluvial relief can be repeated for channels 

with this empirically observed form, yielding equivalent relations that are not directly 

tied to the above list of assumptions, ie. these relations are valid even if the stream power 

river incision model is not: 
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C. River Incision Processes 

Powerpoint Presentation: Physical Erosion Processes; plus lecture on constraints on 

how erosion processes scale with mean bed shear stress (ie. what is exponent a for 

different processes?) 

Topics Discussed During Presentation 

River Incision into Bedrock: 

•	 Interaction of a suite of process 

o	 Plucking, Abrasion (bedrock & suspended load), Cavitation (?), 

Weathering 

•	 Vortices shed off macro-roughness drive processes 

o	 Relation to mean bed shear stress? 

•	 Critical stress for incision/flood frequency 

•	 Adjustment of channel morphology/bed state 

•	 How non-linear? Relation to Climate? 

D. Weaknesses of the Stream Power River Incision Model 

•	 Neglects critical shear stress for incision (assumed exceeded in floods of interest) 

•	 Exponent a and kb unknown and depend on process(es) active 

•	 kb should depend on sediment flux – details uncertain 

•	 assumes steady, uniform flow, but much erosion may be related to knickpoints 

and local flow accelerations – at what scale should S be measured? 

•	 Roughness assumed constant in space (and with flow depth) 
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•	 No model for channel width, just assumed to follow hydraulic geometry 

•	 No explicit treatment of flood frequency 

•	 Basin hydrology (Q ~ A
c
) best for moderate floods. Extreme events can be point-

source events 

•	 Small angle approximation breaks down in steep mountain channels and on 

knickpoints (but minor in comparison to other concerns) 

E. Transient Profile Form and Landscape Response Time (time 

to steady state) 

Consider response of landscape starting at an initial steady state and subjected to a 

sudden step-function change in either rock uplift rate (U) or climate (K). Transient 

profile consists of two sections separated by an abrupt change in slope – a knickpoint. 

Downstream of the knickpoint the channel profile is adjusted to the new conditions 

(steady state with Uf and/or Kf); upstream of the knickpoint the channel profile reflects 

the old steady-state conditions (steady state with Ui and/or Ki). 

The profile reaches steady state when the lower segment reaches x = xc, or when: 

( ) ( )cfc xzxz =

Time to steady state is given by the ratio of the total change in elevation at x = xc to the 

rate of change of elevation at x = xc: 
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Further, we can deduce from the transient profile form that: 
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( ) ( ) ( )
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for a change in U only, Kf/Ki = 1; for a change in K only, Uf = Ui = U 

Thus, defining the fractional change in uplift and the coefficient of erosion as: 

ifU UUf = ; ifK KKf =

we may write the rate of change of elevation at x = xc as: 

for a change in U only 

for a change in K only 

Thus system response time is given simply by: 
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Assumptions: 

•	 ( )KUfx
c

,! ; 
c

xL >>  β = constant 

• S
i
= k

si
A

!" , Sf = ks f A
!"

(concavity invariant, ks function of uplift rate) 

o For stream power model, k
si
= (

U

K
i

)

1

n , ks f = (
U

K f

)

1

n

•	 Slope is unchanged above knickpoint


Retain sharp knickpoint
! no information is passed upstream 

(order of) 
 
T
U

 1Ma

Vertical Knickpoint Velocity 

Objective: Use the solution for response time above to solve for vertical knickpoint 

velocity. Key: knickpoint travels (in z) from the basin outlet to the final position of the 

10 



12.163/12.463 Surface Processes and Landscape Evolution 

K. Whipple	 September, 2004 

fluvial channel head … over the full distance of the new steady-state fluvial relief, in the 

same total amount of time. 

Set this definition of response time equal to the one derived above (they are two ways to 

express the same thing): 

TU =
!z

knick

Vkp
=
z(xc ) f

Vkp
=
"K

#
1

n (U f

1

n #Ui

1

n )

U f #Ui

z(xc ) f = !K
"
1

nU f

1

n

Solve for knickpoint velocity: 

Vkp =
U f

1

n (U f !Ui )

U f

1

n !Ui

1

n

=
fU

1

nUi ( fU !1)

fU

1

n !1

where fU =U f /Ui

Vkp =U f when n =1thus, 

•	 transient, U goes up, K goes down !knickpoint moves upstream at 

constant vertical rate (all lie on the same contour within a basin!) 

• !

!

lithology ! fixed knickpoint 

• uplift (across a fault) ! fixed knickpoint 

Powerpoint Presentation: Distinctive Transient Behavior of Detachment-Limited 

and Transport-Limited Models. 

F. Advanced Topics: Process-Specific Abrasion Model; Critical 

Shear Stress and Flood Frequency Distributions 

Bedload Abrasion (saltation) Plane Bed (smooth): 
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Sklar and Dietrich, 2004, WRR 
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where Q
s
is sediment flux (supply), Q

c
is transport capacity and F

e
is fraction exposed 

bedrock. 
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!= where βg is the fraction of sediment that is bedload. 

Abrasion by Suspended Load: 

Eas =
Saqke

!r

where !
r
is rock density, S

a
is abrasion susceptibility ( !

v
), and qke is the kinetic energy 

flux of particles impacting the bed. 

qke =
1

2
!rcvup

2 "up # up
3 # uw

3 ; where up is the particle velocity. 

Suspended transport: 
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We can expect: 
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Critical Shear Stress and Flood Frequency Distribution: 

Tucker and Bras, 2000, WRR (see more in stochastic_storms_bedrock_chns.ppt) 

Snyder et al, 2003, JGR 

Tucker, 2004, ESPL 

Powerpoint Presentation on the Above Topics. 
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