12.215 Modern Navigation

Thomas Herring

Review of last Class

- Motion of the Earth and Sun
- Geometry of Earth/Sun system
- Astronomical coordinates
- Motion of the Earth around the sun
- Equation of Time
- Astronomical positioning
- Latitude and Longitude determination using astronomical bodies
- Error contributions to latitude and longitude measurements.

Today's Class

- Almanacs: Paper and electronics
- Paper Almanacs: Nautical Almanac
- Electronic: Available on many web sites

Nautical Almanac

- Probably most common for ship navigation in US. Published by the US Naval Observatory and Her Majesty's Nautical Almanac Office.
- Contains all the necessary information for celestial navigation
- New volume published each year and contains information from Jan 1 to Dec 31 of that year
- Largest part of book gives the RA and Declinations of Sun, Moon, Aries, Venus, Mars, Jupiter and Saturn every hour of every day

Cover of Nautical Almanac

Call Numbers

Sun and Moon Tables

2002 OCTOBER 1, 2,

UT	SUN		MOON				
	GHA	Dec	GHA	v	Dec	d	HP
d							
100	18232.1	S 302.0	25348.4	6.8	N24 48.9	3.7	57.7
01	19732.3	03.0	26814.2	6.8	2445.2	3.9	57.7
02	21232.5	03.9	28240.0	6.8	2441.3	4.0	57.8
03	22732.7	04.9	29705.8	6.7	2437.3	4.1	57.8
04	24232.9	05.9	31131.5	6.8	2433.2	4.3	57.8
05	25733.1	06.8	32557.3	6.7	2428.9	4.5	57.9
06	27233.3	S 307.8	34023.0	6.8	N24 24.4	4.6	57.9
07	28733.5	08.8	35448.8	6.7	2419.8	4.8	58.0
T 08	30233.7	09.7	914.5	6.7	2415.0	4.9	58.0
U 09	31733.9	10.7	2340.2	6.7	2410.1	5.1	58.0
	33234.1	11.7	3805.9	6.7	2405.0	5.3	58.1
E 11	34734.3	12.7	5231.6	6.8	2359.7	5.4	58.1
S 12	234.5	S 313.6	6657.4	6.7	N23 54.3	5.5	58.1
D 13	1734.7	14.6	8123.1	6.7	2348.8	5.7	58.2
A 14	3234.9	15.6	9548.8	6.7	2343.1	5.9	58.2
Y 15	4735.1	16.5	11014.5	6.7	2337.2	6.0	58.3
16	6235.3	17.5	12440.2	6.7	2331.2	6.1	58.3
17	7735.5	18.5	13905.9	6.8	2325.1	6.3	58.3
18	9235.7	S 319.4	15331.7	6.7	N23 18.8	6.5	58.4
19	10735.9	20.4	16757.4	6.7	2312.3	6.6	58.4
20	12236.1	21.4	18223.1	6.8	2305.7	6.8	58.5
21	13736.3	22.3	19648.9	6.8	2258.9	6.9	58.5
22	15236.5	23.3	21114.7	6.7	2252.0	7.1	58.5
23	16736.7	24.3	22540.4	6.8	2244.9	7.2	58.6

Entries in Table
GHA - Greenwich Hour Angle

Dec - Declination

v - Rate of change of
GHA ('/hr)
d-Rate of change of declination ('/hr)

HP - Horizontal parallax

Explanation

- Greenwich Hour Angle is the angle between a body and the Greenwich meridian measured positive west (note sign convention difference).
- The Greenwich Hour Angle of the Sun is always near 0 at 12:00UT (difference is equation of time).
- The GHA of the first point of Aries is the negative of Greenwich sidereal time.
- v and d are computed simply by differencing values and make hand calculations easier

Horizontal Parallax of Moon

- Tables are given to the center of a body from the center of the Earth. The moon is close enough that the finite sizes of the Earth and Moon affect measurements.
- HP of moon is difference in angles between edge of Earth and edge of moon. See http://aa.usno.navy.mil/faq/docs/RST defs.html http://www.fourmilab.ch/earthview/moon ap per.html

Equation of Time

- Also given in the Almanac is the equation of time for each day of the year. From this entry you can calculate when the meridian crossing will be a Greenwich.
- The difference between the Greenwich meridian of the Sun and the local crossing is the longitude.

Day	SUN			MOON			
	Eqn. 00^{h}	Time	Mer. Pass.		Pass. Lower	Age	Phase
d	m s	m s	h m	h m	h m	d	\%
1	1008	1018	1150	0722	1950	24	32
2	1027	1037	1149	0819	2047	25	22
3	1046	1056	1149	0915	2142	26	13

Comments on Nautical Almanacs

- The nautical Almanac contains many other tables and explanations. Many of these tables were used before the advent of calculators and computer programs.
- Paper almanacs are meant to be used by ships at sea with little computational power.
- Altitude (elevation angles) corrections are given for the size of the Sun ($\sim 16^{\prime}$) and atmospheric refraction. For atmospheric refraction an approximate formula is (accurate to $5^{\prime \prime}$ at 20°)

$$
\Delta \varepsilon=60 " /(\tan \varepsilon+0.028)
$$

Atmospheric refraction

Error in simple refraction model

Nautical Almanac Correction

- Based on Pressure and temperature zone A-N

A4 ALTITUDE CORRECTION TABLES-ADDITIONAL CORRECTIONS additional refraction corrections for non-standard conditions

Corrections

- From Zone and altitude additional correction applied

App. Alt.	A	B	C	D	E	F	G	H	J	K	L	\mathbf{M}	\mathbf{N}	App. Alt.
- 0	-6.9		-4.6	-3.4	-2.3	-I•I	$0 \cdot 0$	+1.I	+2.3	+3.4	+4.6	+5:7	+6.9	$\because 0^{\circ}$
- 30	$-6 \cdot 9$ $5 \cdot 2$	-5.7	-4.6	-3.4 2.6	-2.3	- $\mathbf{1} \cdot 1$	0.0	+1.1	$+2 \cdot 3$	+3.4	$+4 \cdot 6$	$+5 \cdot 7$	+6.9	- 00
- 30	$5 \cdot 2$	$4 \cdot 4$	$3 \cdot 5$	$2 \cdot 6$	1.7	0.9	0.0	0.9	$1 \cdot 7$	$2 \cdot 6$	$3 \cdot 5$	$4 \cdot 4$	$5 \cdot 2$	- 30
I 00	$4 \cdot 3$	$3 \cdot 5$	$2 \cdot 8$	2-1	I-4	0.7	$0 \cdot 0$	0.7	1-4	$2 \cdot 1$	2.8	3.5	$4 \cdot 3$	± 00
I 30	$3 \cdot 5$	$2 \cdot 9$	2.4	I. 8	I. 2	0.6	$0 \cdot 0$	0.6	1-2	I-8	$2 \cdot 4$	2.9	$3 \cdot 5$	130
200	$3 \cdot 0$	$2 \cdot 5$	$2 \cdot 0$	1.5	1.0	0.5	0.0	0.5	I•O	I-5	2.0	2.5	3.0	200
230	-2.5	$-2 \cdot 1$	-1.6	-1.2	-0.8	-0.4	0.0	+0.4	+0.8	+1-2	$+1 \cdot 6$	+2.1	$+2 \cdot 5$	230
300	$2 \cdot 2$	1.8	1.5	I•I	0.7	$0 \cdot 4$	0.0	0-4	0.7	I-I	1.5	1.8	$2 \cdot 2$	300
330	2.0	1.6	$1 \cdot 3$	I. 0	0.7	0.3	0.0	0.3	0.7	I-O	1.3	1.6	2.0	330
400	1.8	I• 5	$1 \cdot 2$	0.9	0.6	0.3	$0 \cdot 0$	$0 \cdot 3$	0.6	0-9	1.2	1.5	1.8	400
430	1.6	1.4	1-1	0.8	0.5	0.3	0.0	0-3	0.5	0-8	I-I	1.4	1.6	430
500	-1.5	-1.3	- 1.0	-0.8	-0.5	-0.2	0.0	+0.2	+0-5	+0-8	+1.0	+1.3	+1.5	500
6	$1-3$	I•I	0.9	0.6	0.4	0.2	$0 \cdot 0$	0-2	$0-4$	$0 \cdot 6$	0.9	1-1	I-3	6
7	I-I	0.9	0.7	0.6	0.4	0.2	0.0	0-2	$0-4$	0-6	0.7	0.9	I-I	7
8	I. 0	0.8	0.7	0.5	$0 \cdot 3$	0.2	0.0	$0-2$	0-3	0.5	0.7	0.8	1.0	8
9	0.9	0.7	0.6	0.4	$0 \cdot 3$	O.I	0.0	$0 \cdot 1$	0-3	0-4	0.6	0.7	0.9	9
1000	-0.8	-0.7	-0.5	-0.4	-0.3	-0.I	0.0	+0.1	+0.3	+0.4	+0.5	+0.7	+0.8	1000
12	0.7	0.6	0.5	0.3	$0 \cdot 2$	$0 \cdot 1$	0.0	O-1	0-2	0-3	0.5	0.6	0.7	12
14	0.6	0.5	0.4	$0 \cdot 3$	$0 \cdot 2$	$0 \cdot 1$	$0 \cdot 0$	O-I	$0 \cdot 2$	0-3	0.4	0.5	0.6	I4
16	0.5	0.4	0.3	0.3	0.2	$0 \cdot 1$	0.0	$0 \cdot 1$	0-2	$0-3$	0.3	0.4	0.5	16
18	$0 \cdot 4$	0.4	0.3	$0 \cdot 2$	$0 \cdot 2$	$0 \cdot 1$	0.0	O-1	0-2	0-2	0.3	0.4	0.4	18
20 -	-0.4	-0.3	-0.3	-0.2	-0.1	-0.1	0.0	+0.1	+0-1	+0-2	+0.3	+0.3	+0.4	2000
25	0.3	0.3	0.2	$0 \cdot 2$	$0 \cdot 1$	-0.1	0.0	+0.1	$0-1$	0-2	0.2	0.3	0.3	25
30	0.3	0.2	0.2	O. 1	$0 \cdot 1$	0.0	0.0	$0-0$	O-1	O-I	0.2	0.2	$0 \cdot 3$	30
35	$0 \cdot 2$	0.2	$0 \cdot 1$	$0 \cdot 1$	$0 \cdot 1$	0.0	0.0	$0 \cdot 0$	O-1	O-I	$0 \cdot 1$	0.2	0.2	35
4	0.2	O.I	$0 \cdot 1$	$0 \cdot 1$	-0.1	0.0	0.0	$0 \cdot 0$	+0-1	O-I	$0 \cdot 1$	0.1	0.2	40
50	-0.1	-0.I	-0.1	-0.1	$0 \cdot 0$	0.0	0.0	$0 \cdot 0$	O-0	+0.1	+0.1	+0.1	+0.1	5000

On-line almanacs

- If access to the internet is possible then the on-line versions of almanacs are much easier to use
- Computer programs are also available which can be run locally. All of the values in the Almanac are now computed (observations are no longer needed).
- http://aa.usno.navy.mil/data/ has many resources including an on-line version of MICA (Multi-Year Interactive Computer Almanac) http://aa.usno.navy.mil/data/docs/WebMICA 2.html
- Other on-line sources:
http://www.tecepe.com.br/nav/almanac.html-ssi
http://www.tecepe.com.br/scripts/AImanacPagesISAPI.isa
For the remainder of the class we will examine these on-line sources and compare the results to the paper Nautical Alamanac

