12.400: The Solar System

Problem Set \#3

Useful number: $G=6.67 \times 10^{-11} \mathrm{nt} \mathrm{m}^{2} \mathrm{~kg}^{-2}$
Make sure your mass units are in kg, length units in m.
Please show all work neatly and clearly. Circle final answer for clarity.

1. Interplanetary Olympics

In the interplanetary Olympics, you are a gold medal contender for the longest measured throw of the javelin. Assuming you throw with a constant speed of 25 meters / second and at an optimum angle for maximum distance:
a. What is the minimum diameter planet where this event should be held so that the judges can make a determination of how far you threw (i.e. it does not escape)?
b. For a planet having this diameter, what is the minimum time it could take for a javelin you throw to circle the planet and strike you in the back? (The velocity doesn't need to equal your maximum of 25 meters / second.)
(Assume an average density for planetary bodies equal to $3000 \mathrm{~kg} \mathrm{~m}^{-3}$)

2. Tidal Forces

Show that the Moon exerts a tidal force on the Earth that is about twice that of the tidal force exerted by the Sun on the Earth.
3. Should We Duck for Cover?

A comet is discovered with the following orbital elements
$a=110.0 \mathrm{AU} \quad \mathrm{e}=0.995 \mathrm{i}=89 \mathrm{deg}$
$\Omega=180 \mathrm{deg} \quad \omega=0 \mathrm{deg} \mathrm{T}=2008$ March 21.
a. How close does the comet come to Earth?
b. If $\Omega=0$ deg, how close does the comet come to Earth?
c. What is the comet's velocity at 1 AU?

