Course 12.425. Problem Set 4. Due 1 Nov. 2007.

1. Planet Albedos and Related Questions

a. Which body in our solar system has the highest albedo?
b. One analogy for the brightness ratio of an Earth-twin is: looking for a firefly 6 feet away from a searchlight that is 2,600 miles distant. Come up with a similar analogy for a planet with $R_{p}=2 R_{\oplus}$ that is twice as close to a star that has a temperature two thirds that of the sun.
c. If the Moon's albedo were 0.9 instead of 0.1 , how would this affect the Earth?

2. Black Body Radiation.

In class we discussed: black body radiation $B(\nu, T)$,

$$
\begin{equation*}
B(\nu, T)=\frac{2 h \nu^{3}}{c^{2}} \frac{1}{e^{h \nu / k T}-1} \tag{1}
\end{equation*}
$$

planet flux F; and the Stefan-Boltzmann law,

$$
\begin{equation*}
F=\pi \int_{0}^{\infty} B(\nu, T) d \nu \equiv \sigma_{R} T_{\mathrm{eff}}^{4} \tag{2}
\end{equation*}
$$

Derive the radiation constant

$$
\begin{equation*}
\sigma_{R}=\frac{2 \pi^{5}}{15} \frac{h}{c^{2}}\left(\frac{k}{h}\right)^{4} \tag{3}
\end{equation*}
$$

and give its value and units. Here h is Planck's constant, c is the speed of light, and k is Boltzmann's constant.

3. Planet Temperature and Energy

For this problem we will assume stars and planets can be approximated by black bodies. We will use the equilibrium temperature derived in class

$$
\begin{equation*}
T_{\mathrm{eq}}=T_{\mathrm{eff}, *}\left(\frac{R_{*}}{a}\right)^{1 / 2}\left[\left(1-A_{\mathrm{B}}\right)\right]^{1 / 4} \tag{4}
\end{equation*}
$$

Here a is the semi-major axis, and f^{\prime} and A_{B} is the Bond albedo.
a) Compute $T_{\text {eq }}$ for a hot Jupiter orbiting a sun-like star. The hot Jupiter has $a=0.04 \mathrm{AU}, A_{\mathrm{B}}=0.01$.
b) Compare the energy Earth receives from the sun (using $T_{\text {eq }}$ and the Stefan-Boltzmann law) to the energy emitted from Earth's interior, 55 terra Watts.

