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Subdisciplines of Seismology 
Seismology can be decomposed into three representative subdisciplines: body 
waves, surface waves, and normal modes of free oscillation. Technically, 
these domains form a continuum, each pertaining to particular frequency 
bands, spatial scales, etc. In all cases, these representations satisfy the wave 
equation, but each is subject to different boundary conditions and simplify­
ing assumptions. Each is therefore relevant to particular types of subsurface 
investigation. Below is a table summarizing the salient characteristics of the 
three. 

Figure 1: Summary of 3 subdisciplines of seismology. 

As the table suggests, the normal modes provide a framework for repre­
senting global seismic waves. Typically, these modes of free oscillation are 
of extremely low frequency and are therefore difficult to observe in seismo­
grams. Only the most energetic earthquakes are capable of generating free 
oscillations that are readily apparent on most seismograms, and then only 
if the seismograms extend over several days. 

Normal Modes (Free Oscillations) 
Please note that normal modes were only touched on in the 2008 semester 
course. For further discussion of Normal Modes in the Fourier Domain and 
Synthetic Seimograms, see 22 April 2005 open courseware materials. 
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Figure 2: (b) 1D and (c) 3D analogs of free oscillation. 

To understand normal modes, which describe the modes of free oscil­
lation of a sphere, its instructive to consider the 1D analog of a vibrating 
string fixed at both ends as shown in panel Figure 2b. This is useful be­
cause the 3D case (Figure 2c), similar to the 1D case, requires that standing 
waves wrap around and meet at a null point. The string obeys the 1D wave 
equation with fixed-end BCs, the general expression and solution to which 
are: 

(1) δ2u = 1 δ2u 
δx2 c2 δt2 

.. .u(x, t) = Aei(t+x/c) + Bei(t−x/c) + Cei(t+x/c) + Dei(t−x/c) 

The boundary conditions require that u(0, t) = u(L, t), which implies 
that A = −B and C = −D. Hence: 

(2) 2i(Aeit − Ce−it sin (ωL ) = 0 sin (ωL ) = 0 c ⇒ c 

ωL ⇒ = (n + 1)π, n = 0, 1, 2, ..., ∞c 

So there are infinitely many discrete frequencies, ωn, that satisfy (1), 
and these are called eigenfrequencies. 

Figure 3 depicts several modes or eigenfrequencies that satisfy (2). n=0 
corresponds to the fundamental mode and all n ≥ 1 correspond to higher 
modes (overtones). 

2




Figure 3: Modes (n).
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Aside: We have already seen ω − k plots for surface and body waves and 
have learned how to interpret and manipulate them. Normal modes are also 
frequently graphically depicted using ω − l plots, where ω has the normal 
meaning and where l is the characteristic length or angular order. But note 

2π 2πR k = λ and l = λ where λ is the wavelength; so the angular order is like 
a wave number! l also denotes the spherical harmonic degree. 

Normal Mode Nomeclature The wave equation, subject to spherical 
boundary conditions, gives rise to the so-called spherical harmonics: 

ü = c2�2u → (spherical boundary conditions)→ Spherical harmonics. 

For example, the gravitational potential can be expressed in spherical 
harmonics by: 

The above equation displays a 2l + 1 degeneracy. That is, for each l 
there exist 2l + 1 modes (solutions). For example, for l = 0 there is only 
one mode; for l = 1, there are three modes corresponding to A0

1, A
1
1, B1

1 . n 
indicates the number of nodes along the radius of the Earth (also called the 
overtone number), and l is the angular order, which indicates the number 
of nodal planes on the surface (see Figures 4 and 5). 
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Figure 4: Spheroidial and Toroidal Motion Diagrams


Figure 5: Surface and Radial patterns of Normal Modes
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Spheroidal modes ( P-SV; changes in volume) are denoted by nSl and are 
sensitive to compressional and shear wavespeed as well as density. Toroidal 
modes ( SH; rotation or shear; no change in volume) are denoted by nTl 

and are sensitive only to shear wavespeed. There are more spheroidal than 
toroidal modes. 

There are a number of modes that have been given special names. One 
such mode is 0S0 (see Figure 5, bottom left), which is called the breathing 
mode because the entire spherical volume periodically expands and con­
tracts. It was first observed by normal mode seismologists after the 2004 
Sumatra earthquake. Another is 0S2(see Figure 5, top left), which is called 
the football mode because the extrema of this free oscillation are shaped 
like an American football (also because a European football displays this 
oscillation when it is kicked). Two modes that do not exist naturally are 
the 0S1 and 0T1 modes. The 0S1 spheroidal mode cannot exist because it re­
quires the displacement of the center of gravity, which cannot happen. The 
0T1 toroidal mode cannot exist because it requires the entire sphere to twist 
back and forth, which contradicts the conservation of angular momentum 
for a rotating sphere. 

In 3D spherical harmonics, each spherical harmonic or normal mode of 
the Earth can be treated as a basis function. Any wave on Earth can be 
represented as a weighted sum of normal modes or spherical harmonics, 
as heuristically expressed in the x − t domain. Therefore, if we take the 
normal mode power spectrum of a seismogram we shall see spectral peaks 
corresponding to the frequency of these modes. But, because of the 2l + 1 
degeneracy described above, there are multiple modes of free oscillation for 
each l. Each of these modes should oscillate at the same frequency. However, 
because of the Earths rotation, the 2l + 1 modes will not be observed to be 
oscillating at precisely the same frequency. Hence, while we should observe 
a sharp spike in the power spectrum for each l (this is called a singlet), we 
often observed a broadened or smeared spike around the expected frequency 
of the normal mode (this is called a multiplet). These ideas are illustrated 
in Figure 7. 

In fact, a multiplet can sometimes become so spread out that the power 
spectrum for a particular mode appears multimodal. This is aptly termed 
normal mode splitting. It is currently hypothesized that normal mode split­
ting is the effect of anisotropy, not rotational frequency modulation. 
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Figure 6: Some spherical harmonics 

Normal Mode Seismology: Density 
Density is very poorly constrained by body and surface waves. Free Os­
cillations are constrained by gravity and tell us about density structure: 
ρü = � · σ + fgravity 

Reflectivity Method 
A Propagator matrix describes a propagating wave field through multiple 
layers. A displacement field is connected to the adjoining layers by bound­
ary conditions. The matrix system allows a stepwise relationship between 
layers called the Reflectivity Method. 

Receiver functions are related to studies with interfaces and body waves 
and are used for inverse scattering problem. (See Chevrot and van der Hilst, 
EPSL 2000.) 
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Anisotropy 
So far we have assumed isotropy, i.e. wavespeeds do not depend on the 
direction of wave propagation. We solved the wave equation assuming plane 
waves: � � 

sin i sin j λ+2µ µp = α = β where vp = α = ρ and vs = β = ρ . 

Snell’s Law and Generalized Hook’s law held only for isotropic medium. 

Anisotropy, however, cannot be ignored as it is the focus of increasing 
research in seismology and is inherent in our environment from stratifica­
tion, sedimentation, anisotropic minerals, etc. 

Figure 7: In an isotropic medium, wavefronts are concentric circles with 
radius dependent on the velocity (vp or vs) as shown above. The raypaths 
are perpendicular to wavefronts and the slowness vector is perpendicular to 
the wavefront. The energy goes with group velocity and group velocity is 
also perpendicular to wavefronts. 
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Figure 8: In an anisotropic media the wavefronts are distorted. The ray-
paths are not perpendicular to the wavefronts, therefore the direction of the 
group velocity is not the same as the direction of the phase velocity. In a 
homogeneous media there are still three solutions but now they are called 
quasi P (q P), quasi SH(q SH) and quasi Sv (q Sv). 
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Now we look at some basic theory to get insights into the problem and 
concepts. A full treatment is beyond the scope of this class. 

We have used the Generalized Hookes Law: 

τij = cijkl�kl 

τij = τji → cijkl = cjikl 

�kl = �lk → cijkl = cjilk 

And from thermodynamics: 

cijkl = cklij 

These relationships reduce the number of independent elements from 81 
to 21 elements. 

In the isotropic case, Generalized Hooke’s Law simplifies to: 

cijkl = λδij δkl + µ(δikδjl + δilδjk) 

Where only the two independent parameters are the Lam constants, λ 
and µ. 

c1111 = c2222 = c3333 = λ + 2µ 

c1122 = c1133 = c2233 = λ 

c1212 = c1313 = c2323 = µ 

Else = 0 

An anisotropic medium is a more complex system and uses symme­
tries such as: 
Orthorhombic- (e.g. olivine) with 9 elements 
Hexagonal- with 5 elements 
Cubic- (e.g. MgO) with 3 elements 

Anisotropy is not due to individual minerals but the whole medium or 
lattice. Lattice preferred orientation (LPO) is the deformation of olivine by 
plate motion. Olivine minerals can align along their long axes from high 
stress deformation. We can use studies of anisotropy as a measure of strain, 
but we have problems distinguishing history dependent LPO from signals of 
current strain. 
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Anisotropic Case: Hexagonal Symmetry 
Hexagonal symmetry is very useful for seismology where there is rotational 
symmetry around a symmetry axis (not necessarily vertical but often is). 

Figure 9: Anisotropic medium with hexagonal symmetry. This layered sys­
tem has a vertical symmetry axis which is most useful for Earth. In the 
transverse direction (ie. direction perpendicular to the symmetry axis) we 
have isotropy. This is also known as Vertical Transverse Isotropy (VTI). 

The advantages of VTI are: 
1. q SH and q Sv can still be treated separately. 
2. The velocities vary only with incidence angle and not with azimuth. 

If the symmetry axis is horizontal you have azimuthal anisotropy or 
Horizontal Transverse Isotropy (HTI). 

For mathematical convenience we introduce a new notation conven­
tion in order to collapse the 4th order tensor into a 2nd order tensor (ie. 
cijkl → CIJ ):

Let 11 1; 22 2; 33 3; 23 4; 13 5; 12 6.
→ → → → → → 

For example, c1122 = C12. 
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So for isotropic media:


We will continue this discussion in the next class.
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