12.520 Lecture Notes 25

The Stream Function

For continuum mechanics in general and fluid mechanics specifically, a number of "laws" are expressed in terms of differential equations. For example,

1) Newton's second law ($\mathrm{F}=\mathrm{ma}$)
(general)

$$
\frac{\partial \sigma_{j i}}{\partial x_{j}}+\rho f_{i}=\rho \frac{D v_{i}}{D t}
$$

2) Rheology (constitutive equation)
(Newtonian fluid)

$$
\sigma_{i j}=-p \delta_{i j}+2 \eta \dot{\varepsilon}_{i j}
$$

3) Definition of strain rate

$$
\dot{\varepsilon}_{i j}=\frac{1}{2}\left(\frac{\partial v_{i}}{\partial x_{j}}+\frac{\partial v_{j}}{\partial x_{i}}\right)
$$

4) Continuity (conservation of mass)
(incompressible)

$$
\frac{\partial v_{i}}{\partial x_{i}}=0
$$

These 4 coupled first order differential equations, plus boundary conditions, can be solved to determine fluid flow for a variety of interesting applications.

Alternatively, they can be combined to form a single fourth order differential equation.

For fluids, this fourth order equation often involves the stream function.

Consider a 2-D flow with velocities v_{1}, v_{3} in the x_{1}, x_{3} plane ($v_{2}=0$)

$$
\text { If } v_{1}=-\frac{\partial \Psi}{\partial x_{3}}
$$

$$
v_{3}=\frac{\partial \Psi}{\partial x_{1}} \Rightarrow \nabla \cdot \underset{\sim}{v}=\frac{\partial v_{i}}{\partial x_{i}}=-\frac{\partial^{2} \Psi}{\partial x_{1} \partial x_{3}}+\frac{\partial^{2} \Psi}{\partial x_{3} \partial x_{1}}=0
$$

Incompressibility is automatically satisfied!
[In general, if $\underset{\sim}{v}=\nabla \times \underset{\sim}{\Psi}, \nabla \cdot \underset{\sim}{v}=0$. Here $\underset{\sim}{\Psi}=(0, \Psi, 0)$]

Substituting into the (steady) Navier-Stokes equation

$$
\begin{aligned}
& -\frac{\partial p}{\partial x_{1}}-\eta\left(\frac{\partial^{3} \Psi}{\partial x_{1}^{2} \partial x_{3}}+\frac{\partial^{3} \Psi}{\partial x_{3}^{3}}\right)+\rho f_{1}=0 \\
& -\frac{\partial p}{\partial x_{3}}+\eta\left(\frac{\partial^{3} \Psi}{\partial x_{1}^{3}}+\frac{\partial^{3} \Psi}{\partial x_{1} \partial x_{3}^{2}}\right)+\rho f_{3}=0
\end{aligned}
$$

Now take $\frac{\partial}{\partial x_{3}}$ of first, $\frac{\partial}{\partial x_{1}}$ of second

$$
\begin{aligned}
& -\frac{\partial^{2} p}{\partial x_{1} \partial x_{3}}-\eta\left(\frac{\partial^{4} \Psi}{\partial x_{1}^{2} \partial x_{3}{ }^{2}}+\frac{\partial^{4} \Psi}{\partial x_{3}^{4}}\right)+\rho \frac{\partial f_{1}}{\partial x_{3}}=0 \\
& -\frac{\partial^{2} p}{\partial x_{1} \partial x_{3}}+\eta\left(\frac{\partial^{4} \Psi}{\partial x_{1}{ }^{4}}+\frac{\partial^{4} \Psi}{\partial x_{1}^{2} \partial x_{3}^{2}}\right)+\rho \frac{\partial f_{3}}{\partial x_{1}}=0
\end{aligned}
$$

Subtract:

$$
\begin{aligned}
& \eta\left(\frac{\partial^{4} \Psi}{\partial x_{1}{ }^{4}}+2 \frac{\partial^{4} \Psi}{\partial x_{1}{ }^{2} \partial x_{3}{ }^{2}}+\frac{\partial^{4} \Psi}{\partial x_{3}{ }^{4}}\right)+\rho\left(\frac{\partial f_{3}}{\partial x_{1}}-\frac{\partial f_{1}}{\partial x_{3}}\right)=0 \\
& \frac{\partial^{4} \Psi}{\partial x_{1}{ }^{4}}+2 \frac{\partial^{4} \Psi}{\partial x_{1}{ }^{2} \partial x_{3}{ }^{2}}+\frac{\partial^{4} \Psi}{\partial x_{3}{ }^{4}}=\nabla^{2}\left(\nabla^{2} \Psi\right)=\nabla^{4} \Psi
\end{aligned}
$$

∇^{4} is called biharmonic operator.

For uniform or no $\underset{\sim}{f}: \quad \nabla^{4} \Psi=0$
Advantages of using the biharmonic operator are

1. only one equation
2. efficient solution

Disadvantage: Loss of "physical insight".

Physical Interpretation of Stream Function

Consider triangle APB.

For incompressible fluid,

$$
\begin{aligned}
& \text { flux }_{\mathrm{AP}}+\text { flux }_{\mathrm{BP}}+\text { flux }_{\mathrm{AB}}=0 \\
& -v_{3} \delta x_{1}+v_{1} \delta x_{3}+\text { flux }_{\mathrm{AB}}=0 \\
& \text { flux }_{\mathrm{AB}}=v_{3} \delta x_{1}-v_{1} \delta x_{3}=\frac{\partial \Psi}{\partial x_{1}} \delta x_{1}+\frac{\partial \Psi}{\partial x_{3}} \delta x_{3}=\delta \Psi \\
& \text { or } \int_{\mathrm{A}}^{\mathrm{B}} \mathrm{~d} \Psi=\Psi_{B}-\Psi_{A}
\end{aligned}
$$

Difference in Ψ represents the flux crossing the curve.

Solution of biharmonic

Polynomials (e.g., for Conette flow, $\Psi=-\frac{v_{0} x_{3}{ }^{2}}{2 h}$)
Separation of variables:

$$
\begin{aligned}
& \Psi=X(x) Z(z) \\
& \nabla^{4} \Psi=0 \Rightarrow X^{\prime \prime \prime} Z+2 X^{\prime \prime} Z^{\prime \prime}+X Z " "=0
\end{aligned}
$$

$$
\frac{X^{\prime \prime "}}{X}+2 \frac{X^{\prime}}{X} \frac{Z^{\prime \prime}}{Z}+\frac{Z^{\prime \prime "}}{Z}=0
$$

Harmonic $\Psi=\sin \frac{2 \pi x}{\lambda} Z(z)$
Solution: $\Psi=\left[(A+B z) \exp \left(\frac{2 \pi z}{\lambda}\right)+(C+D z) \exp \left(-\frac{2 \pi z}{\lambda}\right)\right] \sin \left(\frac{2 \pi x}{\lambda}\right)$
Physical boundary conditions: $\quad T_{n}=0 \quad T_{\tau}=0$

In $x_{1}{ }^{\prime}, x_{3}{ }^{\prime}$ coordinates, at $x_{3}=\xi\left(x_{1}\right)$:

$$
\begin{aligned}
\sigma_{3^{\prime} 3^{\prime}} & =0 \\
\sigma_{3^{\prime} 1^{\prime}} & =\sigma_{1^{\prime} 3^{\prime}}=0
\end{aligned}
$$

Have solution to biharmonic in terms of x_{1}, x_{3}-- easily applied at $x_{3}=0$.

Need to take physical ($x_{1}{ }^{\prime}, x_{3}{ }^{\prime}$) boundary conditions and

1. rotate to x_{1}, x_{3} space
2. Taylor's series expansion
3. subtract out hydrostatic reference state

Result (to first order in ξ / λ)

$$
\sigma=\left(\begin{array}{ccc}
? & ? & 0 \\
? & ? & 0 \\
0 & 0 & \rho g \xi
\end{array}\right)
$$

4. solve biharmonic.

Postglacial Rebound

Decay of Boundary Undulations (1/2 space, uniform η)

Figure 25.1
Figure by MIT OCW.

- Assume uniform η
- Subtract out lithostatic pressure $P=p-\rho g x_{3}$
- Assume ρg uniform
- Use stream function Ψ

$$
v_{1}=-\frac{\partial \Psi}{\partial x_{3}} \quad v_{3}=\frac{\partial \Psi}{\partial x_{1}}
$$

$\Rightarrow \nabla^{4} \Psi=0$
Solution: $\Psi=\left[\left(A+B k x_{3}\right) \exp \left(-k x_{3}\right)+\left(C+D k x_{3}\right) \exp \left(k x_{3}\right)\right] \cdot \sin k x_{1}$
Boundary conditions:
at $\mathrm{x}_{3}=0$ (mathematical, not physical)

$$
\begin{aligned}
& \sigma_{33}=\rho g \zeta \\
& \sigma_{13}=0=\eta\left(\frac{\partial v_{1}}{\partial x_{3}}+\frac{\partial v_{3}}{\partial x_{1}}\right)
\end{aligned}
$$

at $\mathrm{x}_{3} \rightarrow \infty$, must be bounded

$$
\Rightarrow C=D=0
$$

In order that $\sigma_{13}=0$ at $x_{3}=0$,

$$
\begin{aligned}
& -\frac{\partial^{2} \Psi}{\partial x_{3}{ }^{2}}+\frac{\partial^{2} \Psi}{\partial x_{1}{ }^{2}}=0 \\
& \Rightarrow B=A \\
& \text { or } \Psi=A\left(1+k x_{3}\right) \exp \left(-k x_{3}\right) \cdot \sin k x_{1}
\end{aligned}
$$

Then

$$
\begin{aligned}
& v_{1}=A k^{2} x_{3} \exp \left(-k x_{3}\right) \cdot \sin k x_{1} \\
& v_{3}=A k\left(1+k x_{3}\right) \exp \left(-k x_{3}\right) \cdot \cos k x_{1} \\
& \text { at } x_{3}=0 \quad v_{3}=\dot{\zeta}=A k \cos \left(k x_{1}\right)
\end{aligned}
$$

Now

$$
\begin{array}{ll}
\sigma_{33}=-p+2 \eta \dot{\varepsilon}_{33} \\
\dot{\varepsilon}_{33}=0 & \text { at } x_{3}=0
\end{array}
$$

To get p, use $-\frac{\partial p}{\partial x_{i}}+\eta \frac{\partial^{2} v_{i}}{\partial x_{j} \partial x_{j}}+\rho x_{1}=0$
for $i=1$

$$
\Rightarrow-\frac{\partial p}{\partial x_{1}}+\eta\left(\frac{\partial^{2} v_{1}}{\partial x_{1}{ }^{2}}+\frac{\partial^{2} v_{1}}{\partial x_{3}{ }^{2}}\right)=0
$$

Substitute for v_{1} and integrating $\left.\Rightarrow p\right|_{x_{3}=0}=2 \eta k^{2} A \cos k x_{1}$
But $p=-\rho g \zeta \Rightarrow A=-\frac{\rho g \zeta_{0}}{2 k^{2} \eta}$
Or $\dot{\zeta}_{0}=-\frac{\rho g \zeta_{0}}{2 k \eta}=-\frac{\rho g \lambda \zeta_{0}}{4 \pi \eta}$
Or $\zeta_{0}=\left.\zeta_{0}\right|_{t=0} \exp \left(-\frac{\rho g t}{2 k \eta}\right)=\left.\zeta_{0}\right|_{t=0} \exp \left(-\frac{t}{\tau}\right)$
where $\tau=\frac{2 k \eta}{\rho g}=\frac{4 \pi \eta}{\rho g \lambda}$
Solving for η : $\eta=\frac{\rho g \lambda \tau}{4 \pi}$
For curves shown,
$\left.\begin{array}{l}\tau: 5000 \mathrm{yr} \\ \lambda: 3000 \mathrm{~km}\end{array}\right\} \Rightarrow \eta: 10^{21} \mathrm{~Pa}$
Note: stream function $\sim \exp \left(-k x_{3}\right)=\exp \left(-\frac{2 \pi x_{3}}{\lambda}\right)$
Falls off to $\sim 1 / e$ at $x_{3}: \frac{\lambda}{2 \pi}$
Senses to fairly great depth
\Rightarrow postglacial rebound doesn't reveal the details of mantle viscosity structure, but only the gross structure.

Note: Behavior at Hudson Bay and Boston different:

Boston

Subsidence, then uplift

Is this consistent with uniform $1 / 2$ space?

$$
\tau=\frac{4 \pi \eta}{\rho g \lambda}
$$

Decompose into Fourier components

Details depend on geometry of ice load and elastic support of load.

Suppose we require faster relaxation for short λ than for long λ.

How to get solution? What are the boundary conditions?

