12.520 Lecture Notes 25

The Stream Function

For continuum mechanics in general and fluid mechanics specifically, a number of "laws" are expressed in terms of differential equations. For example,

1) Newton's second law (F = ma)

$$\frac{\partial \sigma_{ji}}{\partial x_j} + \rho f_i = \rho \frac{D v_i}{D t}$$

2) Rheology (constitutive equation)

$$\sigma_{ij} = -p\delta_{ij} + 2\eta\dot{\varepsilon}_{ij}$$

3) Definition of strain rate

$$\dot{\varepsilon}_{ij} = \frac{1}{2} \left(\frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} \right)$$

4) Continuity (conservation of mass)

$$\frac{\partial v_i}{\partial x_i} = 0$$

These 4 coupled first order differential equations, plus boundary conditions, can be solved to determine fluid flow for a variety of interesting applications.

Alternatively, they can be combined to form a single fourth order differential equation.

For fluids, this fourth order equation often involves the stream function.

Consider a 2-D flow with velocities v_1 , v_3 in the x_1 , x_3 plane ($v_2 = 0$)

$$\mathrm{If}\,v_1 = -\frac{\partial\Psi}{\partial x_3}$$

(Newtonian fluid)

(general)

(incompressible)

(general)

$$v_3 = \frac{\partial \Psi}{\partial x_1} \implies \nabla \cdot \underline{v} = \frac{\partial v_i}{\partial x_i} = -\frac{\partial^2 \Psi}{\partial x_1 \partial x_3} + \frac{\partial^2 \Psi}{\partial x_3 \partial x_1} = 0$$

Incompressibility is automatically satisfied!

[In general, if $\underline{v} = \nabla \times \Psi$, $\nabla \cdot \underline{v} = 0$. Here $\Psi = (0, \Psi, 0)$]

Substituting into the (steady) Navier-Stokes equation

$$-\frac{\partial p}{\partial x_1} - \eta \left(\frac{\partial^3 \Psi}{\partial x_1^2 \partial x_3} + \frac{\partial^3 \Psi}{\partial x_3^3} \right) + \rho f_1 = 0$$
$$-\frac{\partial p}{\partial x_3} + \eta \left(\frac{\partial^3 \Psi}{\partial x_1^3} + \frac{\partial^3 \Psi}{\partial x_1 \partial x_3^2} \right) + \rho f_3 = 0$$

Now take
$$\frac{\partial}{\partial x_3}$$
 of first, $\frac{\partial}{\partial x_1}$ of second

$$-\frac{\partial^2 p}{\partial x_1 \partial x_3} - \eta \left(\frac{\partial^4 \Psi}{\partial x_1^2 \partial x_3^2} + \frac{\partial^4 \Psi}{\partial x_3^4} \right) + \rho \frac{\partial f_1}{\partial x_3} = 0$$

$$-\frac{\partial^2 p}{\partial x_1 \partial x_3} + \eta \left(\frac{\partial^4 \Psi}{\partial x_1^4} + \frac{\partial^4 \Psi}{\partial x_1^2 \partial x_3^2} \right) + \rho \frac{\partial f_3}{\partial x_1} = 0$$

Subtract:

$$\eta \left(\frac{\partial^4 \Psi}{\partial x_1^4} + 2 \frac{\partial^4 \Psi}{\partial x_1^2 \partial x_3^2} + \frac{\partial^4 \Psi}{\partial x_3^4} \right) + \rho \left(\frac{\partial f_3}{\partial x_1} - \frac{\partial f_1}{\partial x_3} \right) = 0$$
$$\frac{\partial^4 \Psi}{\partial x_1^4} + 2 \frac{\partial^4 \Psi}{\partial x_1^2 \partial x_3^2} + \frac{\partial^4 \Psi}{\partial x_3^4} = \nabla^2 (\nabla^2 \Psi) = \nabla^4 \Psi$$

 ∇^4 is called biharmonic operator.

For uniform or no $f: \nabla^4 \Psi = 0$

Advantages of using the biharmonic operator are

- 1. only one equation
- 2. efficient solution

Disadvantage: Loss of "physical insight".

Physical Interpretation of Stream Function

Consider triangle APB.

For incompressible fluid,

$$flux_{AP} + flux_{BP} + flux_{AB} = 0$$
$$-v_3 \delta x_1 + v_1 \delta x_3 + flux_{AB} = 0$$
$$flux_{AB} = v_3 \delta x_1 - v_1 \delta x_3 = \frac{\partial \Psi}{\partial x_1} \delta x_1 + \frac{\partial \Psi}{\partial x_3} \delta x_3 = \partial \Psi$$
$$or \int_{A}^{B} d\Psi = \Psi_B - \Psi_A$$

Difference in Ψ represents the flux crossing the curve.

Solution of biharmonic

Polynomials (e.g., for Conette flow, $\Psi = -\frac{v_0 x_3^2}{2h}$)

Separation of variables:

$$\Psi = X(x)Z(z)$$
$$\nabla^{4}\Psi = 0 \Longrightarrow X''''Z + 2X''Z'' + XZ''' = 0$$

$$\frac{X'''}{X} + 2\frac{X''}{X}\frac{Z''}{Z} + \frac{Z'''}{Z} = 0$$

Harmonic $\Psi = \sin \frac{2\pi x}{\lambda} Z(z)$

Solution: $\Psi = [(A + Bz)\exp(\frac{2\pi z}{\lambda}) + (C + Dz)\exp(-\frac{2\pi z}{\lambda})]\sin(\frac{2\pi x}{\lambda})$

Physical boundary conditions: $T_n = 0$ $T_{\tau} = 0$

In x_1 ', x_3 ' coordinates, at $x_3 = \xi(x_1)$:

$$\sigma_{3'3'} = 0$$

 $\sigma_{3'1'} = \sigma_{1'3'} = 0$

Have solution to biharmonic in terms of x_1 , x_3 -- easily applied at $x_3 = 0$.

Need to take physical (x_1', x_3') boundary conditions and

- 1. rotate to x_1 , x_3 space
- 2. Taylor's series expansion
- 3. subtract out hydrostatic reference state

Result (to first order in ξ / λ)

$$\sigma = \begin{pmatrix} ? & ? & 0 \\ ? & ? & 0 \\ 0 & 0 & \rho g \xi \end{pmatrix}$$

4. solve biharmonic.

Postglacial Rebound

Decay of Boundary Undulations (1/2 space, uniform η)

- Assume uniform η
- Subtract out lithostatic pressure $P = p \rho g x_3$
- Assume ρg uniform
- Use stream function Ψ

$$v_1 = -\frac{\partial \Psi}{\partial x_3}$$
 $v_3 = \frac{\partial \Psi}{\partial x_1}$

 $\Rightarrow \nabla^4 \Psi = 0$

Solution: $\Psi = [(A + Bkx_3)\exp(-kx_3) + (C + Dkx_3)\exp(kx_3)] \cdot \sin kx_1$

Boundary conditions:

at $x_3 = 0$ (mathematical, not physical)

$$\sigma_{33} = \rho g \zeta$$

$$\sigma_{13} = 0 = \eta \left(\frac{\partial v_1}{\partial x_3} + \frac{\partial v_3}{\partial x_1} \right)$$

at $x_3 \rightarrow \infty$, must be bounded

In order that $\sigma_{13} = 0$ at $x_3 = 0$,

 $\Rightarrow C = D = 0$

$$-\frac{\partial^2 \Psi}{\partial x_3^2} + \frac{\partial^2 \Psi}{\partial x_1^2} = 0$$

$$\Rightarrow B = A$$

or $\Psi = A(1 + kx_3) \exp(-kx_3) \cdot \sin kx_1$

Then

$$v_1 = Ak^2 x_3 \exp(-kx_3) \cdot \sin kx_1$$

$$v_3 = Ak(1 + kx_3)\exp(-kx_3) \cdot \cos kx_1$$

at $x_3 = 0$ $v_3 = \dot{\zeta} = Ak\cos(kx_1)$

Now

$$\sigma_{33} = -p + 2\eta \dot{\varepsilon}_{33}$$
$$\dot{\varepsilon}_{33} = 0 \quad \text{at } x_3 = 0$$

To get *p*, use
$$-\frac{\partial p}{\partial x_i} + \eta \frac{\partial^2 v_i}{\partial x_j \partial x_j} + \rho x_1 = 0$$

for
$$i = 1$$

$$\Rightarrow -\frac{\partial p}{\partial x_1} + \eta(\frac{\partial^2 v_1}{\partial x_1^2} + \frac{\partial^2 v_1}{\partial x_3^2}) = 0$$

Substitute for v_1 and integrating $\Rightarrow p|_{x_3=0} = 2\eta k^2 A \cos kx_1$

But
$$p = -\rho g \zeta \Longrightarrow A = -\frac{\rho g \zeta_0}{2k^2 \eta}$$

Or $\dot{\zeta}_0 = -\frac{\rho g \zeta_0}{2k\eta} = -\frac{\rho g \lambda \zeta_0}{4\pi \eta}$
Or $\zeta_0 = \zeta_0 \Big|_{t=0} \exp(-\frac{\rho g t}{2k\eta}) = \zeta_0 \Big|_{t=0} \exp(-\frac{t}{\tau})$
where $\tau = \frac{2k\eta}{\rho g} = \frac{4\pi\eta}{\rho g\lambda}$
Solving for η : $\eta = \frac{\rho g \lambda \tau}{4\pi}$
For curves shown,

$$\begin{array}{c} \tau : 5000 \text{ yr} \\ \lambda : 3000 \text{ km} \end{array} \right\} \Rightarrow \eta : 10^{21} \text{ Pa}$$

Note: stream function ~ $\exp(-kx_3) = \exp(-\frac{2\pi x_3}{\lambda})$

Falls off to
$$\sim 1/e$$
 at $x_3 : \frac{\lambda}{2\pi}$

Senses to fairly great depth

 \Rightarrow postglacial rebound doesn't reveal the details of mantle viscosity structure, but only the gross structure.

Note: Behavior at Hudson Bay and Boston different:

Is this consistent with uniform 1/2 space?

$$\tau = \frac{4\,\pi\eta}{\rho g\lambda}$$

Decompose into Fourier components

Details depend on geometry of ice load and elastic support of load.

Suppose we require faster relaxation for short λ than for long λ .

How to get solution? What are the boundary conditions?