
 
12.520 Lecture Notes 25 

 
 
The Stream Function  
 
For continuum mechanics in general and fluid mechanics specifically, a number of 

“laws” are expressed in terms of differential equations. For example, 

1) Newton’s second law (F = ma)   (general) 
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2) Rheology (constitutive equation)   (Newtonian fluid) 
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3) Definition of strain rate    (general) 

 
εij =

1

2

∂vi

∂x j

+
∂vj

∂xi

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟  

4) Continuity (conservation of mass)   (incompressible) 
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These 4 coupled first order differential equations, plus boundary conditions, can be 

solved to determine fluid flow for a variety of interesting applications. 

 

Alternatively, they can be combined to form a single fourth order differential equation. 

 

For fluids, this fourth order equation often involves the stream function. 

 

Consider a 2-D flow with velocities v1, v3 in the x1, x3 plane (v2 = 0)  
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Incompressibility is automatically satisfied! 

 

[In general, if  Here  ,   0.v v= ∇× Ψ ∇ ⋅ = Ψ = (0,Ψ,0)]  

 

Substituting into the (steady) Navier-Stokes equation 
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Subtract: 
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∇4  is called biharmonic operator. 

 

For uniform or no       f : ∇4Ψ = 0

Advantages of using the biharmonic operator are  

1. only one equation 

2. efficient solution 



 

Disadvantage: Loss of “physical insight”. 

 

Physical Interpretation of Stream Function 

Consider triangle APB. 
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For incompressible fluid,  

 fluxAP + fluxBP + fluxAB = 0 

 −v3δx1 + v1δx3 + fluxAB  = 0  

 fluxAB  = v3δx1 − v1δx3 =
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Difference in Ψ represents the flux crossing the curve. 

 

Solution of biharmonic 

Polynomials (e.g., for Conette flow, Ψ = −
v0x3
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Separation of variables: 

 Ψ = X(x)Z(z)  
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Solution: Ψ = [(A + Bz)exp(
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Physical boundary conditions:    Tn = 0      Tτ = 0  
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In coordinax1 ',  x3 '
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 σ 3'1' = σ1' 3 '
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Postglacial  Rebound  
 
Decay of Boundary Undulations (1/2 space, uniformη ) 

 

Figure 25.1 

 

• Assume uniformη  

• Subtract out lithostatic pressure P = p − ρgx3  

• Assumeρg uniform 

• Use stream function  Ψ
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⇒ ∇4Ψ = 0  

Solution: Ψ = A+ Bkx3( )exp −kx3( )+ C + Dkx3( )exp kx3( )⎡⎣ ⎤⎦ ⋅ sin kx1  

Boundary conditions:  

at x3 = 0  (mathematical, not physical) 
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at x3 , must be bounded →∞

Figure by MIT OCW.
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τ = τ0 cos (kx1)

k = 2π
λ



 C = D = 0 ⇒

In order that σ 13 = 0 at , x3 = 0
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 or Ψ = A(1+ kx3 )exp −kx3( )⋅ sin kx1  

Then 
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Substitute for v1 and integrating ⇒ p
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Solving forη : η =
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For curves shown, 



  
 

τ : 5000 yr

λ : 3000 km

⎫
⎬
⎭
⇒η : 1021  Pa

Note: stream function  
 
∼ exp(−kx3 ) = exp(−

2πx3

λ
)  

 Falls off to 
 
∼ 1 / e   at x3 : λ

2π
 

 Senses to fairly great depth 

  postglacial rebound doesn’t reveal the details of mantle viscosity structure, ⇒

 but only the gross structure. 

 

Note: Behavior at Hudson Bay and Boston different: 

 

                         Hudson Bay                        Boston  

 

 

 

 

                        Continuous uplift             Sub
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Is this consistent with uniform 1/2 space? 

 τ = 4πη
ρgλ

 

 

Decompose into Fourier components 

 

                                                                       

 

Details depend on geometry of ice load and e

 

Suppose we require faster relaxation for sho
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elastic “lithosphere” 

 

 

                                                                low viscosity “asthenosphere” 

 

              depth                                          higher viscosity “mesosphere” 

 

 

 

How to get solution? What are the boundary conditions? 
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