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12.520:  Geodynamics 
(Continuum mechanics applied to geological problems) 

Lecture 1 
 

Handouts - Course description & reserve list 

 • Instructor background 

 • Student background 

 • Scheduling 

Mechanics:  the study of the motion of matter and the forces that cause such motion.  

Based on concepts of time, space, force, energy, matter. 

Applications to point masses, solid bodies familiar from introductory physics. 

Continuum mechanics - mechanics of parts of "bodies." 

 

Continuum - define values of fields (e.g., density) as functions of position, i.e., at points. 
Example : density ρ(P) =

Vn → 0
lim  Mn

Vn

 

  Vi —> Sequence of volumes converging on P 

  Mi  —> Mass enclosed by Vi  

 

 

Fig. 1_1 
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Breakdown at small V (e.g., gas) 

 

Fig. 1_2 

 

 

Ignore fine structure.  Assume: 

 • Continuity:  completely fills space (no pores or voids) and has properties 

describable by continuous functions.  [Scale dependent.  E.g., sand will be treated as a 

continuum] 

 • Homogeneity - identical properties at all points   [Scale dependent.] 

 • Isotropy - properties same in all directions.  [Often not true. e.g., schist] 

Behavior describable in terms of partial differential equations subject to boundary 

conditions.  All functions will be "well behaved," except at a finite # of surfaces. 
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Logical contradiction between mathematical process of taking limits & physical 

breakdown of continuum description at small scales ignored.  (Assume - fields varying 

slowly enough that math defined before description falls apart.) 

 

At core:  Newton's 2nd Law:         F = ma, or F -ma = 0. 

 for this course, a = 0 => the governing equation is F = 0! 

 •  Applies not just to particles, entire bodies, but to regions within bodies. 
 •  Free-body diagram - cut open body (thought experiment), examine forces of 
interaction between surfaces. 
 
Description of forces acting in the continuum -  For taking limits, etc, forces/unit area 
make sense.  Consider tractions T:  Force/unit area on faces (vector quantities). 
 
Units:  SI - Pascal (Pa); 1 Pa = 1 N/m2 

 cgs:  dyne/cm2 
 "geophysics": bar ( 1 atmosphere): 1 bar = 106 dynes/cm2 = 0.1 MPa 

A general description of the tractions acting on planes of arbitrary orientation requires:

 •  stress - forces of interaction (2nd rank tensor) 

    Newton's 2nd —> τij,j + fi = 0. 

 •  strain & rotation - kinematics of motion & deformation  (2nd rank  
   tensors) 
 •  rheology (constitutive law) - relationship between stress & strain 
   solids - elastic, plastic, brittle 
   fluids - viscous, ideal 
   other - e.g., Silly putty, paint,  
 

We will quantify these quantities soon, but first a digression to a concrete example to 
bring things into focus.  When I moved to southern CA ~ 1980, I was impressed by press 
coverage of a set of law suits pending against various governments (state & local).  The 
question to be settled was who was responsible for an expensive housing development 
"sliding into the ocean."  Briefly, the sequence of events was: 

1) "Nature" deposited a terrace (mainly sand) beside the ocean. 

2)  The highway department made a road cut into the base of the sea cliff to put in a 
coastal highway. 
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3)  Expensive houses were built on top of the terrace. 

4)  Lawns were watered lavishly. 

5)  Landslides started wrecking the expensive houses. 

 

 

       

Fig. 1_3 

 

We will examine the "continuum mechanics" of this situation & come up with some 
"expert opinion" about responsibility.  We need to do two things:  first, understand how 
sand responds to "internal forces," then understand how to describe these forces. 

 
Assertion:  Sand pile behavior, as a first approximation, is governed by friction.  So are 
earthquake faults.   
(reading:  T & S, pp 351-353) 
 
 Consider an experiment to measure the frictional behavior of sand.  One approach would 
be to place some sand between a block & a table, subjecting the block to a downward 
force F and a horizontal force V (in T&S notation).  If the block has area A, there is a 
 normal traction   σn = F/A 
 and a shear traction  τ = V/A 
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Fig. 1_4 

 
 
Admonton's law (to summarize a lot of experiments) states that the shear force needed to 
cause sliding is related to the normal force pressing the block down as  

V = fs F 
or, in terms of tractions 

τ = fs σn 
Digression:  One very sensitive way of measuring fs  (developed at MIT) is to use an 
inclined plane & vary the inclination angle θ.  Suppose this is done & loading is carried 
out by varying the # of bricks squeezing the sand.  How will θ depend on the # of bricks? 
 
 

 
Fig. 1_5 
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Another digression:  An amazing result from rock mechanics, "Byerlee's law," is that fs  
is essentially independent of rock type! 
 
 

 
Fig. 1_6 

 
 
Now,  back to the sand pile.  Admonton's law tells us that any time the shear traction on a 
plane reaches a value of fs σn, the sand pile will fail.  The complication is that we no 
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longer have a brick & a bench to work with — what we need is a mathematical 
description of normal and shear tractions on arbitrary planes in a continuum.  We start 
out with a special description of the tractions on a surface oriented with the coordinate 
system, then will go on to generalize. 
 
It is useful to break tractions into their component parts (normal & shear): 

Define σij as force/unit area acting on face with normal ni in direction nj. 

Consider now a small parallelepiped with faces in the co-ordinate planes and dimensions 

dx1, dx2, and dx3. The tractions on the three faces can be resolved into their Cartesian 

components, one normal and two tangential to the face on which the traction acts: 

 
T(1)i = (σ11,σ12 ,σ13 )
T(2)i = (σ 21,σ 22 ,σ 23)
T(3)i = (σ 31,σ 32 ,σ 33)

 

where  T  denotes the traction on the face normal to the axis x1, and so on. The nine 

components of the tractions form a 

(1)i

3 × 3  matrix 

 

σ ij =
σ11 σ12 σ13

σ 21 σ 22 σ 23

σ 31 σ 32 σ 33

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 

where for each component the first subscript denotes the co-ordinate axis to which the 

surface is normal, and the second subscript denotes the direction in which the component 

acts. For example, σ 23 denotes the component acting on the face normal to in the 

direction of . 

x2

x3
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Fig. 1_7 

 

Case 1:  Water at rest:  What are the relations among components? 

Case 2:  A cube at the corner of the table:  What are the relations among components? 


