
Class 6: Early-Arrival Waveform Tomography 
Mon, Sept 28, 2009 

• Acoustic-wave equation in time and frequency domain 
• Finite-difference wavefield simulation 
• Time-domain versus frequency-domain inversion strategy 
• Signal processing and wavelet extraction 
• Computer exercise – invert synthetic waveform data 

This class introduces a high-end imaging technology that is currently under research 
and development in academia and industry.  Early-arrival waveform inversion is very 
promising in resolving hidden layers and complex velocity structures, and the 
computer capacity today is sufficient enough to deal with waveform tomography.  
This class shall offer a new commercial program that helps students to perform full 
wavefield modeling and waveform tomography. 

Acoustic-wave equation 

Ideally we would like to perform full waveform tomography by modeling with elastic 
wave equation, and inverting elastic wavefield for Vp, Vs, density, and Q at the same 
time.  That sounds what it really should be done.  Unfortunately, that tomography 
problem is too complicated.  In stead, most of research attempts to solve a full-waveform 
tomography associated with scalar acoustic wave equation in time domain or in 
frequency domain. 

We shall review two papers in this area, one for time-domain waveform tomography, and 
the other for frequency-domain waveform tomography. 

References: 

Sheng, J., A. Leeds, M. Buddensiek, and G. T. Schuster, 2006, Early arrival waveform 
tomography on near-surface refraction data: Geophysics, 71, No.4, U47-U57. 
(Time-domain approach) 

Ravaut, C., S. Opero, L. Improta, J. Virieux, A. Herrero, and P. Dell Aversana, 2004, 
Multiscale imaging of complex structures from multifold wide-aperture seismic data by 
frequency-domain full-wave tomography: application to a thrust belt, Geophys. J. Int. 
159, 1032-1056. 
(Frequency-domain approach) 

Input: early-arrival seismic waveform data in time domain or frequency slices 
Output: updated P-wave velocity model 
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Time-domain story: 


Visco acoustic wave equation in time domain: 


(1) 

p(r,t|rs) is the pressure field at position r at time t from a source at rs, k(r): bulk module, 
ρ(r): density. s(r,t|rs) is the source function. 

Scalar wave equation, assuming constant density, c(r)2=k(r)/ρ(r)= k(r)/ρ0: 
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Question: can you derive equation (2) from (1) with the constant density assumption? 

Forward modeling: synthetic data: convolution of Green’s function with source wavelet: 

(3) 

p(r, t | r ) = ∫G(r, t | r ' ,0)* s(r ' , t | rs )dr ' s


r '


(4) Finite-difference solution to the following equation to obtain Green’s function: 
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(5) Waveform Residuals: 

δ p(rg , t | rs )= [pobs (rg , t | rs )− pcalc (rg , t | rs )]m(rg , t | rs ) 

(6) Objective Function: ψ = ||δp ||2 + τ ||L(c)||2 

(7) Gradient of Objective Function: ∂ψ/∂c = g(r) - τLTL(c) 
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where : 

• 

p(r, t | rs ) = 
∂ p(r, t | rs )∂t 

• 

p'(r, t | rs ) = 
∂ p'(r, t | rs )∂t 

p(r,t|rs): forward-propagated wavefield 
p′(r,t|rs): back-projected waveform residuals 

(8) Back projection of waveform residuals 

p'(r, t | r ) = ∫G(r,−t | r ' ,0)*δ s(r ' , t | rs )dr ',s 
r ' 

where 
( ' , t | rs ) = ∑δ r −rg ) (  p rg , t | rsδs r ( ' δ ) 

g 

(9) Nonlinear Conjugate Gradients: 

dk = −Pk gk + βk dk −1, 

where : 

Pk : geometric - spreading preconditioner; 

T 

βk =
gk • ( 

T

Pk gk − Pk −1gk −1 ) : Polak −Ribiere formula 
gk −1 •Pk −1gk −1 

(10) Update velocity model: 

( ) ( )  ( )ck +1 r = ck r + λk dk r ,


where :


λk − − −Step Length
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Frequency-domain story: 

Forward modeling: 

Inversion: 

Stabilize the inversion: 

Finite-difference modeling: 
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Model grid size, timestep, propagation velocity must meet CFL condition in time-domain 
explicit implementation: 

CFL condition is a necessary condition for convergence while solving certain partial 
differential equations numerically. It arises when explicit time-marching schemes are 
used for the numerical solution. As a consequence, the timestep must be less than a 
certain time in many explicit time-marching computer simulations, otherwise the 
simulation will produce wildly incorrect results. The condition is named after Richard 
Courant, Kurt Friedrichs, and Hans Lewy who described it in their 1928 paper. 

Perfect Matched Layer (PML) B.C.: see reference paper. 
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