Lecture 23: Marine Nitrogen Cycle

Karen Casciotti

Overview

- Why study the nitrogen cycle?
- Nitrogen pools, fluxes, and distributions
- Biogeochemical transformations
- Open questions
- Human impacts on the nitrogen cycle

Life Needs Nitrogen

Overall Phytoplankton C:N = 6.6 N:P= 16:1 $C_{39}H_{53}O_{24}N_{15}P_4$ C:N = 2.6 $C_{61}H_{97}O_{20}N_{16}$

C:N = 3.8

Figure by MIT OCW.

Nitrogen transformations

<u>Chemical</u> <u>species</u>	<u>Oxidation</u> <u>state</u>		
N_{org}, NH_4^+	-III	Reduced	
NH ₂ OH	-I		
N_2	0		
N ₂ O	Ι		
NO	II		
NO_2^-	III		
NO ₃ -	V	Oxidized	

Marine Nitrogen Pools

- Nitrogen gas (N₂)
 - Nitrous oxide (N₂O)
 - Nitric oxide (NO)
- "Fixed" Nitrogen
 - Inorganic nitrogen:
 - Nitrate (NO₃⁻)
 - Nitrite (NO₂⁻)
 - Ammonium (NH₄⁺)
 - Organic nitrogen:
 - Detritus and Living biomass
 - Dissolved organic matter
 - Proteins/Amino acids
 - Urea
 - Nucleic acids

Sea Surface Chlorophylla

Dugdale and Goering, 1967: the New Production paradigm

- Introduced the concept of balanced new and export production
- Introduced the use of ¹⁵N-labeled compounds to measure rates of new and regenerated production.
- "Ammonium is an important nitrogen source... but nitrate and nitrogen fixation are the most important parameters with respect to nitrogen limitation of primary productivity."

Eppley and Peterson, 1979

- "Only the sinking flux due to new production associated with N₂ fixation and atmospheric sources of N can be identified as... transport of atmospheric CO₂ to the deep ocean."
- Introduced "f ratio" as ratio of new/total production

'HNLC' regions $\frac{1}{5}$ (high nutrient, low $\frac{2}{5}$ chlorophyll)

These regions are typically limited by other factors:

- Light
- Temperature ^{0.0 m}
- Iron, micronutrients

15 Nitrate [micromolar] 20

25

10

ភ

0 5 10 15 20 25 Nitrate [micromolar]

Distribution of Nitrate in Atlantic Ocean

Nitrate section through the ETP

Redfield Ratios and Remineralization

"Redfield Ratio": C_{106} :N₁₆:P₁ applies to both the average composition of phytoplankton biomass and the ratio of nitrate and phosphate generated from organic matter remineralization under oxic conditions

Remineralization of generalized organic matter: $(CH_2O)_{106}(NH_3)_{16}(H_3PO_4) + 138 O_2$

106 CO_2 + 16 HNO_3 + H_3PO_4 + 122 H_2O (106 O_2) (32 O_2)

Global Thermohaline Circulation

Figure by MIT OCW.

Distribution of Nitrate in Atlantic Ocean

Overview

✓ Why study the nitrogen cycle?

✓ Nitrogen pools, fluxes, and distributions

- Biogeochemical transformations
- Open questions
- Human impacts on the nitrogen cycle

✓ Why study the nitrogen cycle?

✓ Nitrogen pools, fluxes, and distributions

- Biogeochemical transformations
- Open questions
- Human impacts on the nitrogen cycle

Redfield Ratios and Remineralization

"Redfield Ratio": C_{106} :N₁₆:P₁ applies to both the average composition of phytoplankton biomass and the ratio of nitrate and phosphate generated from organic matter remineralization under oxic conditions

Remineralization of generalized organic matter: $(CH_2O)_{106}(NH_3)_{16}(H_3PO_4) + 138 O_2$

106 CO_2 + 16 HNO_3 + H_3PO_4 + 122 H_2O (106 O_2) (32 O_2)

HOTS: N₂ fixation may account for 30-50% of export production u^{0} u^{0

2°8

٥°

Evidence for N₂ Fixation

- Occurrence of nitrogen fixing species, such as *Trichodesmium spp.*
- Low $\delta^{15}N$ of sinking organic matter suggestive of significant N₂ fixation
- Acetylene reduction or ¹⁵N₂ incorporation rate estimates

Oceanic Diazotroph Diversity

Zehr, 2000 Trends in Microbiology

Image removed due to copyright restrictions.

Water Column Denitrification Zones

Figure 7. Dissolved O₂ (µmol/L) at 400 m from the World Ocean Atlas [Levitus and Boyer, 1998].

Overview

✓ Why study the nitrogen cycle?

✓ Nitrogen pools, fluxes, and distributions

✓ Biogeochemical transformations

- Open questions
- Human impacts on the nitrogen cycle

Major Questions in Marine N Cycling

- Is the nitrogen cycle in balance?
- How does the N cycle vary on glacial/interglacial timescales?
- How is N₂O produced in the ocean?
- By what mechanism is 'extra excess N₂' formed?

Nitrogen Inputs to the Ocean

Nitrogen Exports from the Ocean

	Organic Sedimentary		Water column		
	Burial D	enitrification	Denitrification Anammox		
Fluxes in Tg N/yr					
Codispoti and Christensen [1985]	21	60	60	?	
Gruber and Sarmiento [1997] (preindustrial)	15 ± 5	85 ± 20	80 ± 20	?	
Gruber and Sarmiento [1997] (postindustrial)	25 ± 10	95 ± 20	80 ± 20	?	
Codispoti et al [2001]	25 ± 10	300	150	?	

Nitrogen Budgets

	Codispoti and Christensen [1985]	Gruber and Sarmiento [1997]		Codispoti et al [2001]
Total sources	74	181 ±44	231 ±44	287
Total sinks	142	184 ±29	204 ±30	481
Residence time of N in the ocean	5,000 years	3,500 years		1,500 years

Is the N cycle in balance? Maybe not! Is it a moving target? What are the consequences?

Major Questions in Marine N Cycling

- Is the nitrogen cycle in balance?
- How does the N cycle vary on glacial/interglacial timescales?
- How is N₂O produced in the ocean?
- By what mechanism is 'extra excess N₂' formed?

Southern ocean nitrate utilization changes

Higher δ^{15} N in diatom-bound organic matter suggests higher degree of nitrate utilization in the Antarctic zone during glacial times.

Depth profiles in gravity core All 107-22 (Antarctic Zone, Atlantic Sector, 55°S, 3°W, 2768 mi of (a) δ ^{¬N} and (b) N content of bulk N (open circles), diatom N (solid circles), and the perchloric acid-treated >63 µm fraction (crosses). which is composed of large diatoms, radiolaria and some detrital gains, Replicate analyses are shown for the cleaned diatom and >63 µm fraction with solid line connecting the mean value of diatoms N analysis. The N content of the bulk sediment is in some cases lower than that of diatom fraction fraction because of the presence of dense detrital grains in the bulk sediment the planktonic focaminiferal δ^{13} stratigraphy [from keigwin and Boyle, 1989] suggested that sediment from the last Glacial maximum is at 65 cm depth.

Figure by MIT OCW.

Sigman et al., 1999

Southern ocean nitrate utilization changes

Figure by MIT OCW.

Sigman and Boyle, 2000

Changes in Denitrification

Sedimentary $\delta^{15}N$ changes from the ETNP

Chart removed due to copyright restrictions.

Ganeshram, R., et al. "Glacial-interglacial Variability in Denitrification in the World's Oceans: Causes and Consequences." *Paleoceanography* 15, no. 4 (2000): 361–376.

Changes in Denitrification

Major Questions in Marine N Cycling

- Is the nitrogen cycle in balance?
- How does the N cycle vary on glacial/interglacial timescales?
- How is N₂O produced in the ocean?
- By what mechanism is 'extra excess N₂' formed?

N₂O vs. AOU

Anticorrelation of N_2O and O_2 concentrations suggests N_2O is produced during organic matter remineralization (nitrification)

Yoshinari, 1976

Ammonia-oxidizing nitrifiers:

Nitrosomonas, Nitrosospira, Nitrosococcus

 $NH_3 + 3/2 O_2 \longrightarrow NO_2 + H_2O + 2 H^+$

Nitrite-oxidizing nitrifiers:

Nitrobacter, Nitrospira, Nitrospina $NO_2^- + 1/2 O_2 \longrightarrow NO_3^-$

 $NH_3 + 2O_2 \longrightarrow NO_3^- + H_2O + 2H^+$ Overall

Rates and Distributions

Chart removed due to copyright restrictions.

Dore, J. E., B. N. Popp, D. M. Karl, and F. J. Sansone. "A Large Source of Atmospheric Nitrous Oxide from Subtropical North Pacific Surface Waters." *Nature* 396, 63-66.

Denitrification and N₂O

Chart removed due to copyright restrictions.

Yoshinari, T., et al. "Nitrogen and Oxygen Isotopic Composition of N2O from Suboxic Waters of the Eastern Tropical North Pacific and the Arabian Sea—Measurement by Continuous-Flow Isotope-ratio Monitoring." *Marine Chemistry* 56 (1997): 253-264.

Major Questions in Marine N Cycling

- Is the nitrogen cycle in balance?
- How does the N cycle vary on glacial/interglacial timescales?
- How is N₂O produced in the ocean?
- By what mechanism is 'extra excess N₂' formed?

Nitrate deficits

"N*" based on Redfield relationship of NO_3^- and PO_4^{3-} : (CH₂O)₁₀₆(NH₃)₁₆(H₃PO₄) + 138 O₂ 106 CO₂ + 16 HNO₃ + H₃PO₄ + 119 H₂O

 $N^* = [NO_3^-] - 16 [PO_4^{3-}] + constant$

Denitrification: N* ↓ (lower [NO₃⁻], unchanged [PO₄³-]) Also, higher N₂/Ar because of N₂ production from nitrate production/accumulation of N₂ yields "excess N₂"

But, there's more N_2 than expected from nitrate deficits!! this phenomenon has been termed "extra excess N_2 "

"Extra Excess N

What is it?

• Discrepancy between N deficit based on N:P ratios and N₂ excess from N₂/Ar ratios

How could it be explained?

- Remineralization of organic matter with high N:P ratio
- Lateral mixing of N_2 from sedimentary denitrification
- Anammox

$$NH_4^+ + NO_2^- \longrightarrow N_2 + 2 H_2O$$

Who: Bacteria in the order *Planctomycetales What:* anaerobically combine NH_4^+ and NO_2^- to form N_2 *Where:* anoxic sediments and watercolumns; Black Sea; Gulfo Dulce, Chile; Benguela Upwelling System *When:* ??

Why: ??

How: Anammoxosome; enzymology known incompletely, but genome sequencing is providing targets for biochemical analysis.

Measurement of Anammox

Isotopic Tracers of Anammox

Isotopic Tracers for Anammox

Overview

✓ Why study the nitrogen cycle?

✓ Nitrogen pools, fluxes, and distributions

✓ Biogeochemical transformations

✓ Open questions

• Human impacts on the nitrogen cycle

Human perturbation of the N cycle

Nitrogen fixation by humans is now equivalent to natural terrestrial nitrogen fixation (~140 Tg N/yr).

The amount of humanproduced N entering the oceans is not well known, but is on the order of 20-40 Tg N/yr

Eutrophication and Anoxia

Mississippi River nitrate loads and Gulf of Mexico Hypoxia

Sea Surface Chlorophyll a

