
11. Boundary conditions 

This last example is particularly simple and in fact represents the same solution that 

would have been obtained using the linearized form of the exact two-dimensional 

equations (9.12) and (9.13). By assuming infinitely periodic solutions, we did not 

have to worry about applying boundary conditions when we inverted (10.5). But 

in general, it will be necessary to apply boundary conditions. A particular problem 

arises in applying conditions at horizontal boundaries at the top and/or bottom of 

fluid systems. Here, the standard Neumann or Dirichlet conditions would amount 

to a specification of either the geopotential, ϕ, or  ∂ϕ/∂p, which is proportional 

to temperature by the hydrostatic equation. Specifying ϕ at the surface would 

eliminate one of the important signals we are actually interested in predicting: at­

mospheric surface pressure and the geopotential height of the sea surface. Moreover, 

specifying temperature also negates the prediction of  an important  quantity.  There­

fore, typically we choose to actually solve a predictive equation for temperature at 

a horizontal boundary. Assuming that ω = 0 on such a boundary, the appropriate 

dynamical boundary condition is (9.4): 

∂ϕ −αQ̇
Dg = . (11.1)

∂p θ 

We shall see that much of the dynamics of atmospheric and oceanic quasi-balanced 

circulations enters through the dynamical boundary conditions (11.1). 

But how should we think about the boundary conditions when inverting (10.5)? 

The Green’s functions approach works well with strict Neumann or Dirichlet con­
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ditions because image points can be used. But dynamical boundary conditions like 

(11.1) usually give space- and time-varying boundary conditions. But a trick bor­

rowed from electrostatics is again useful: We replace the actual boundary tempera­

ture perturbation with a zero value, but add point “charges” of potential vorticity 

just inside the boundary, in analogy to the concept of bound charge. To see how 

this works, let us integrate (10.5) from a lower boundary at pressure p0 to a short 

distance above the boundary: 

∫ ∫ ∣p0 p0 p0 ∣ 
qp 
′ dp =

1 ∇2ϕdp  + 
f0 ∂ϕ ∣∣ . (11.2) 

p0−ε p0−ε f0 S ∂p ∣ 
p0−ε 

Now in the limit of ε → 0, all the terms in (11.2) vanish because they are nonsingular. 

But suppose we artificially replace the actual temperature perturbation, ∂ϕ/∂p, by  

zero at the boundary. Then (11.2) becomes 

p0 

qp 
′ dp = − 

f0 ∂ϕ ∣∣ , (11.3) 
p0−ε S ∂p ∣ 

p0−ε 

so that (11.2) can only be satisfied in this case if qp 
′ behaves like a delta function 

near the boundary. 

From this development it follows that inverting (10.5) with an inhomogeneous 

boundary condition on temperature is equivalent to inverting it with a homogeneous 

boundary condition on temperature but inserting a delta function qp 
′ anomaly next 

to the boundary. From (11.3) and the hydrostatic equation (8.33), this delta func­
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tion is    f0 R  θ′ ∣ atmosphere  S0 p0  
qp 
′ = δ(p0 − p) × p0 (11.4)    f0  G0σ

′ ∣ ocean,  S0 

p0 

where δ is the delta function. This equivalence is valid at a lower boundary. At an 

upper boundary, a similar development leads to 

 ∣ ( )R/cp 
∣      

− f0 
St 

R 
pt 

pt 
p0 

θ′∣ ∣ ∣ atmosphere 

q ′ p = δ(p − pt) ×  
pt ∣ ∣ (11.5)     − f0 

St 
Gtσ

′∣ ∣ ocean, ∣ 
pt 

where pt is the pressure on the upper boundary. Note the minus signs in (11.5). 

This device is of enormous conceptual significance, because it tells us that 

boundary temperature anomalies behave like delta function qp anomalies just inside 

the boundary. In the case of a lower boundary, the temperature anomalies behave 

like delta function qp anomalies of the same sign, whereas at upper boundaries they 

behave like qp anomalies of the opposite sign. 
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Figure 12.1 
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