
9. Quasi-geostrophic potential vorticity 

The quasi-geostrophic system is at once more manageable and more intuitive if it 

is cast in the form of a potential vorticity conservation law and an invertibility 

principle. The potential vorticity conservation law can be obtained by combining a 

vorticity equation with the thermodynamic equation. The former can be obtained 

by taking the curl of (8.29), with the result 

∂ω 
Dg ζg + βvg − f0 − k̂ · ∇ × F = 0, (9.1)

∂p 

where 

ζg ≡ 
∂vg − 

∂ug =
1 ∇2ϕ + O(R0)  (9.2)

∂x ∂y f0 

is the geostrophic relative vorticity. Note that each of the terms in (9.1) is now of 

O(R0), and that to be consistent with this, we have replaced the variable f with a 

mean value in (9.1) and we also need to drop the O(R0) term in (9.2). The β term 

in (9.1) should also be replaced by a mean value. Thus to O(R0), (9.1) becomes 

the quasi-geostrophic vorticity equation: 

2ϕ + β0 
∂ϕ − f2 ∂ω − ˆDg ∇ 0 kf0∇×F = 0. (9.3)
∂x ∂p 

The thermodynamic equation, (8.30), is first cast in a slightly different form 

by substituting (8.33) and dividing through by dθ/dp, with the result 

1 ∂ϕ −αQ̇
Dg + ω = (9.4)S ∂p Sθ 
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with
  
dθ  −α 
dp atmosphere, 

S ≡  θ (9.5)  −α
σ 

d
dp
σ ocean, 

with α given by the appropriate equation of state. 

Note that (9.3) and (9.4) are functions of the variables ϕ and ω alone, given the 

distributions of Q and F. We can form a predictive equation in the single variable 

ϕ by eliminating ω between the two equations. To do this, first take the derivative 

of (9.4) in p: 

∂ 1 ∂ϕ ∂ω ∂ αQ
Dg + = − . (9.6)

∂p S ∂p ∂p ∂p Sθ 

Now note that expanding the left side of (9.6) gives 

∂ 1 ∂ϕ ∂ 
( 

1 ∂ϕ 
) 

∂Vg 1 ∂ϕ 
Dg = Dg + · ∇  

∂p S ∂p ∂p S ∂p ∂p S ∂p ( ) (9.7)
∂ 1 ∂ϕ 1 ∂Vg ∂ϕ 

= Dg + · ∇  . 
∂p S ∂p S ∂p ∂p 

(The S can be taken outside because it is a function of p alone.) But since 

∇ϕ = −fk̂ × Vg, 

(9.7) can be written 

∂
Dg 

1 ∂ϕ 
= Dg 

∂ 
( 

1 ∂ϕ 
) 

− 
f ∂Vg · 

( 

k̂ × 
∂Vg 

) 

∂p S ∂p ∂p S ∂p S ∂p ∂p 

∂ 
( 

1 ∂ϕ 
) 

= Dg . 
∂p S ∂p 

Thus (9.6) can be re-expressed as 

∂ 
( 

1 ∂ϕ 
) 

∂ω ∂ αQ
Dg + = − . (9.8)

∂p S ∂p ∂p ∂p Sθ 
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[ ( )] 

Multiplying this by f0, dividing (9.3) by f0, and adding the result gives 

1 ∂ f0 ∂ϕ ∂ αQ
Dg 

f0 
∇2ϕ + 

∂p S ∂p 
+ β0vg = k̂ · ∇ × F − f0 

∂p S 
. (9.9) 

This can be written in a slightly different form by noting that vg = Dgy: 

∂ αQ
Dg qp = k̂ · ∇ × F − f0 

∂p S 
, (9.10) 

where


qp ≡ 
1 ∇2ϕ + β0y + 

∂ 
( 
f0 ∂ϕ 

) 

(9.11)
f0 ∂p S ∂p 

is the pseudo potential vorticity. 

Note that, in contrast the Ertel’s potential vorticity, qp is conserved follow

ing the geostrophic motion (or pressure surfaces). Also note that the invertibility 

relation (9.11) is a linear three-dimensional elliptic equation for ϕ. Given certain 

boundary conditions, (9.10) and (9.11) constitute a closed system for ϕ, and  the  

geostrophic wind and temperature (or density) perturbation can be recovered from 

(8.32) and (8.33). 

Once again, there is a strong analogy with two-dimensional inviscid fluid dy

namics, governed by 

dη 
dt 

= 0, (9.12) 

η = ∇2ψ, (9.13) 
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where ψ is the streamfunction of the two-dimensional flow. The difference lies 

in two places: Whereas (9.13) is exact, (9.11) relies on the quasi-geostrophic ap

proximation, and contains a three-dimensional elliptic operator rather than a two-

dimensional operator. 

The inversion of elliptic operators like (9.11) or (9.13) encompasses the principle 

of action at a distance: A localized distribution of vorticity, or potential vorticity, 

yields a more global distribution of wind and temperature. Solutions of both (9.11) 

and (9.13), because they are linear operators, are linearly superposable. One useful 

technique for carrying out the inversion is using the method of Green’s functions. 

For a point vortex in a two-dimensional flow, the solution of 

∇2ψ = Aδ(r), 

where r is the radius from the source and A is the amplitude, is 

A 
ψ = − ln r,

2π 

so that the tangential velocity, ∂ψ/∂r, decays away from the point source as 1/r. 

The action-at-a-distance principle is very analogous to the relationship between 

point changes and electric fields in electrostatics. 

An analogous relation holds for the relationship between qp and ϕ, as  given  by  

(9.11). To see this, let us first divide the qp field according to 

qp = qp 
′ + βy, 
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so that, from (9.11), 

1 ∂ 
( 
f0 ∂ϕ 

) 

qp 
′ = ∇2ϕ + . (9.14)

f0 ∂p S ∂p


In the special case that S is constant (equal to S0), (9.14) becomes


qp 
′ = 

f

1 

0 
∇2ϕ + 

f

S 
0 ∂

∂p

2ϕ 
2 
. (9.15) 

Now suppose we scale the horizontal distances in the system by 

x, y → S0
1/2
f0 
−1∆p(x, y), (9.16) 

where ∆p is some pressure scale, and scale pressure by ∆p as well: 

p → (∆p)p. (9.17) 

Then (9.15), with the new independent variables, can be written 

S0∆p2 

qp 
′ = ∇3

2ϕ, (9.18)
f0 

where the notation ∇2
3 is used to indicate the three-dimensional Laplacian oper

ator. A three-dimensional point potential vortex of amplitude Af0/(S0(∆p)2) is  

associated with the geopotential distribution 

A 
ϕ = − , (9.19)

4πr 

showing that the pressure distribution falls off inversely with radius from the source. 

The geostrophic velocities and temperatures fall off as 1/r2 in the horizontal and 
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vertical directions, respectively, and form dipole fields oriented horizontally and 

vertically, respectively. 

Note that the inversion of both (9.11) and (9.13) results in streamfunction 

anomalies of the opposite sign of the vorticity anomalies (or of the opposite sign of 

qp
′ /f0, in the quasi-geostrophic case). 

We now have in hand the core elements of a mode of thinking about the dy

namics of quasi-balanced flows: the twin principles of potential vorticity conserva

tion and invertibility. In the simplest balance approximation, quasi-geostrophy, the 

quantity that is conserved (to order Rossby number) is the pseudo potential vortic

ity, given by (9.11), and this is a linear elliptic function of the perturbation, ϕ, of  

the geopotential from its basic state value. Pseudo potential vorticity is conserved, 

according to (9.10), following the geostrophic flow on pressure surfaces (as opposed 

to the actual, three-dimensional flow). 
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