
Rotation 101 (some basics) 
 
Most students starting off in oceanography, even if they have had some fluid 
mechanics, are not familiar with viewing fluids in a rotating reference frame. 
This is essential in order to understand large scale, low frequency dynamics 
of the ocean. So we must return to some basic about rotating dynamics. 
 
Consider a dish that is curved as 
shown and which is rotating at a 
rate Ω about a vertical axis. Only 
gravity, also vertical, is acting. A 
particle of mass m is resting on the 
surface. (1) What shape does the 
surface have to be in order that 
there are no net forces on the 
particle: can it be at rest in the 
rotating frame? (2) What is the 
apparent gravity acting normal to 
the surface? 
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In a rotating frame, there is a 
centrifugal force acting outward 
from the axis of rotation and 
gravity acting downward. We 
decompose these two forces into 
ones acting parallel (a) and normal 
(b) to the surface 
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where  is the apparent gravity. For the case in which θ < π/2 the first 
relation (balance parallel to surface) becomes 
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So the answer to part (1) of the problem is that the shape is a parabola, the 
solution being 
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where h0 is a constant. The answer to part (2) requires the use of some 
trigonometric identities as well as using the above answer for tanθ. It can be 
easily shown (this is often written and it is usually not that easy) that  
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Centrifugal force can be subsumed into a revised definition of “gravity” 
which is acting on a curved, parabolic surface. For a rotating surface in 2-d 
this varies with radius, increasing outward. So if you want to weigh less, 
move to the center of the surface! 
 
Many rotating surfaces on which things are placed and on which laboratory 
experiments are done already have this parabolic shape. If one saw such a 
surface in the lab and wanted to know what was the correct rotation rate in 
which a particle would be at rest, one could (hard way) figure out the 
quadratic term of the surface or (easy way), drop a marble on the non-
rotating surface and figure out it’s period of oscillation. This will now be 
shown. Newton’s second law for forces acting in the radial direction parallel 
to the surface is  
 
 



rgrg
dr
dhg

dt
rd 22
2

2

)/( Ω−=Ω−=−=   

 
 
This reflects the force balance that makes a particle roll down the slope and 
accelerate under the action of gravity. But we know what the expression for 
the slope (dh/dr) must be from before and inserting that above we see that  
r = a sin(Ωt) + b cos(Ωt) is a solution, where a and b are arbitrary constants 
that can be used to satisfy the initial conditions. So the frequency of 
oscillation, Ω is the same as the period of rotation used to construct the 
surface! 
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Now consider a rotating, self-gravitating sphere 
shown at the right. Gravity acts toward the center 
of the sphere but since it is rotating, there is a 
centrifugal force acting outward from the rotation 
axis on the fluid. What shape does it take if there is 
no motion in the rotating frame? What does 
rotation do to apparent gravity? We will discuss 
this is class, but not actually solve this problem… 
 
 
Coriolis Acceleration/Force 
 
We have examined what shape a rotating surface must take in order for a 
particle to reside on it without motion: it is parabolic. Now consider what 
happens when, in this rotating frame of reference, there is motion. The 
example we will use is taken from a program (coriolis.m) written by Jim 
Price to illustrate what happens when a particle, say a hockey puck, is given 
an initial velocity and afterwards moves without any external forces (other 
than gravity & centrifugal forces, that is). So the surface must be relatively 
slick (ice) so that friction is weak and can be ignored. We will look at the 
motion of the particle in two reference frames: one an inertial frame (non-
rotating) and the other the reference frame rotating with angular velocity 
Ω about an axis parallel with gravity. In the inertial frame, the particle will 
move in the direction given by the initial velocity. But as we have already 



shown, it will be stopped by the parabolic surface and will oscillate with 
frequency Ω. In the rotating frame, it will be seen to move in a circle, 
coming back to its initial position after half a rotation cycle: its frequency of 
oscillation is 2Ω. This circular motion is caused by the reference frame 
rotation under the particle. In this rotating frame, we can account for this 
motion by adding an acceleration to the particle equal to 2Ω x v, where the 
acceleration is at right angles to the both the relative velocity vector v, and 
the rotation vector Ω. Ηere we use bold face as indicating a vector, which is 
also denoted by an arrow over the letter, as below. This acceleration, if 
multiplied by the mass of the particle, is equivalent to a force directed to the 
right of the particle if Ω is as shown (counter-clockwise), and to the left of 
the particle motion if Ω is in the opposite direction. This fictitious force is 
one of the most important ones in oceanography! It arises solely because we 
(and the oceans) are confined to a rotating earth.  
 
Try running the m-file “coriolis.m” written by Jim Price. It illustrates the 
views of a particle on a parabolic surface seen in an inertial (non-
accelerating) reference frame and in the reference frame of the rotating 
system. In the former, a particle will undergo an oscillation about the center 
of the paraboloid, with a frequency Ω, as we showed above. When it is 
halfway through its oscillation, the rotating reference frame is now halfway 
rotated about the axis of rotation, so the particle is at the same position in the 
rotating frame as it had initially! In this reference frame, the frequency of 
oscillation is 2Ω, or twice that in the inertial frame. Notice also how the 
particle appears to move in a circle in a clockwise fashion due to the 
‘fictitious’ coriolis force. In the rotating frame, if (x,y) is the position of the 
particle and (u,v) its velocity, Newton’s second law can be written: 
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where the external forces are represented on the right hand side. We will 
now consider one special type of “external” force: friction. Friction acts to 
impede the motion of the hockey puck. We have all observed that friction 
will eventually act to bring moving things to rest. The simplest form that 
friction can take reflects the fact that it acts in proportion to the mass of the 
particle and is opposite to the velocity of the particle. It acts only on the 
point(s) of contact between the particle and the surface, but can be most 



simply represented by a linear drag force acting on the whole particle. So we 
will modify the above equation to the following: 
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where “r” is a coefficient of friction proportional to “stickiness” of the 
contact between the particle and the surface.  
 
Now we will add another “force”. Suppose that there are bumps in the 
surface: it is not flat. [Recall that we have already accounted for a slow 
curvature due to the centrifugal force.] If the topography of the surface is 
represented by h, then this force is just -g∇h . Where the symbol ∇  is the 
gradient operator which is a vector shorthand the slope of the surface in the 
x- and y- directions: (∂x,∂y)h. This was already introduced earlier when we 
figured out what the equilibrium shape of a rotating surface must take. So 
our equation of motion then becomes: 
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Any remaining forces on the hockey puck (i ≥ 3) are left for the present and 
simply written as F. If we write the above vector equation in its component 
form, it becomes: 
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where f ≡ 2Ω, and we have divided through by the mass, m.  
 



We will illustrate some of the dynamics of the above balances with a 
homework problem: pucks_on_ice. We use ice to illustrate, in part, what 
permanent “bumps” on the surface will do particles. In fact, in a fluid, there 
are no permanent “bumps” on a “free surface” unless they are maintained by 
forces. We will later see that these can be maintained by something called 
the “geostrophic” force balance, in which steady flows are required to 
balance permanent bumps or dimples on the free fluid surface. 
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