
1Internal gravity waves 

In most places, and at most times, the atmosphere is stably stratified to unsatu-
rated displacements. Here we consider what happens when a stably stratified fluid is 
perturbed. These introductory notes cover the simplest case of a Boussinesq fluid. 

Boussinesq flow 

We begin with the Boussinesq equations: 

Du ∂φ 
= − 

Dt ∂x 
Dv ∂φ 

= − 
Dt ∂y 
Dw ∂φ 

= − + b (1)
Dt ∂z 

∂u ∂v ∂w 
+ + = 0 

∂x ∂y ∂z 
Db 

= 0 
Dt 

where u = (u, v, w) is the velocity, b is the buoyancy, φ is the perturbation pressure 
divided by the reference density, and the Lagrangian derivative is D/Dt = ∂/∂t+u·r. 
Note that the third of (1) becomes the equation of hydrostatic balance when Dw/Dt 
is negligible. We will replace this equation by 

Dw ∂φ 
α = − + b . 
Dt ∂z 

The constant α is a trick: α = 1, of course, but we shall carry it through the analysis 
so that we can, after the fact, look at the hydrostatic case by setting α = 0. 

Waves on a motionless basic state 

Assume a motionless, stratified, basic state, with u0 = v0 = w0 = 0, b0 = N2z +R 
constant, φ0 = b0 dz . N2 > 0, so this state is stably stratified. Then we assume 
there are small-amplitude perturbations to the basic state denoted u0, v0, w0, b0 and 
φ0 such that b = b0 + b0 and similarly for the other variables. The perturbations 

1These notes are adapted from notes courtesy of Alan Plumb 
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approximately satisfy the linearized equations resulting from the neglect of nonlinear 
0 ∂u0 

terms such as u
∂x in (1): 

∂u0 ∂φ0 
= − 

∂t ∂x 
∂v0 ∂φ0 

= − 
∂t ∂y 
∂w0 

α 
∂φ0 

= − + b0 
∂t ∂z 

∂u0 ∂v0 ∂w0 
+ + = 0 

∂x ∂y ∂z 
∂b0 0+ N2 w = 0 
∂t 

Denoting the real part by Re, look for wavelike solutions of the form ⎤⎞⎛⎡⎞⎛ 0u U ⎜⎜⎜⎜⎝ 

v0 ⎟⎟⎟⎟⎠ 
= Re 

⎜⎜⎜⎜⎝ 

⎢⎢⎢⎢⎣ 

V 
W 
Φ 

⎟⎟⎟⎟⎠ 
e i(kx+ly+mz−ωt) 

⎥⎥⎥⎥⎦ 
w0 

φ0 

b0 B 

Then 

ωU − kΦ = 0 

ωV − lΦ = 0 

ωαW − mΦ − iB = 0 

kU + lV + mW = 0 

−iωB + N2W = 0 

From the last of these, iB = N2W/ω , so the third eq. gives (ωα − N2/ω) W − mΦ = 
0. Substitute for U, V, W from the first three equations into the fourth equation to 
give � � 

k2 l2 m2 

+ + Φ = 0 ,
ω ω (ωα − N2/ω) 

and hence 
N2 (k2 + l2)

ω2 = . 
[α (k2 + l2) + m2] 

Nonhydrostatic case (α = 1) For the general case, α = 1, and the dispersion 
relation is r 

k2 + l2 

ω = ±N (2)
k2 + l2 + m2 
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Note that this can be written 
ω = ±N sin γ , 

where γ is the angle the wavenumber vector k = (k, l, m) makes with the vertical. So 
|ω| ≤ N . 

The phase speed in the direction of k is given by 

ω 
c = 

|k| 

and the group velocity is 

cg = 

� 
∂ω 

, 

� 
∂ω ∂ω 

, = 
ωm 

� 
km 

, 
lm 

� 

, −1 . 
∂k ∂l ∂m (k2 + l2 + m2) k2 + l2 k2 + l2 

Note: 

1. cg · k = 0 : group propagation is along the phase lines 

2. From the continuity eq., k · u0 = 0 — the fluid motions are along the phase 
lines. (Note that this implies no advection of wave properties; e.g., since b0 

does not vary along lines of constant phase, u0 · rb0 = 0. Hence the nonlinear 
advection terms we neglected on the grounds of small amplitude are in fact zero 
— a monochromatic plane internal gravity wave in a uniform medium is in fact 
a nonlinear solution to the problem!) 

3. Note that point (2) implies that fluid motions are normal to k. So as γ → π/2, 
the motions are vertical and ω → N , the buoyancy frequency; as γ → 0, the 
motions are horizontal (against which the stratification offers no resistance) and 
ω → 0. 

4. Note that if all components of k are real, ω ≤ N : disturbances with ω > N 
cannot propagate. 

5. (cg) = m2k2 / [(k2 + l2 + m2) (k2 + l2)], so the x components of phase and x cx 

group velocities are in the same direction. Similarly, the y component. But 
) = −m2 / (k2 + l2 + m2) — the vertical components of group and phase(cg z cz 

velocities have opposite signs. 

So an upward (and rightward) propagating wave looks as shown in the following 
figure: 
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From a localized source oscillating with a single frequency ω, the waves form rays 
(the “St Andrews’ cross”) at angles γ = sin−1 (ω/N) to the horizontal, with the 
phase propagation across the rays: 

Hydrostatic case ( α = 0) When α = 0, the dispersion relation becomes 

√N 
ω = ± k2 + l2 = ±N tan γ 

m 

There is no longer any restriction ω ≤ N , so the hydrostatic approximation is not 
valid for high frequency waves for which this approximation predicts ω & N , but it 
should be good for γ � 1 (ω � N). Equivalently, it requires k2 + l2 � m2 , i.e., 
vertical scales much less than horizontal scales. 
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