
12.810 Problem set 2 

 

Need help?: Office hours Thursdays 1.30-2.30pm in 54-1712.  

Collaboration is allowed, but write up the solution on your own. Show all work. Give units for 
all numerical results. Put axis labels and units on any graphs. 

1. In this problem you will use a script (available as lee wave 810.py or lee wave 810.m) to solve for
a mountain wave. The script uses the Boussinesq approximation and assumes constant buoyancy
frequency (N = 0.01s−1) and basic-state horizontal wind u0. The domain is 2-dimensional (x-z)
of width 70km and height 15km. The ridge is a single Gaussian, centered at x = 35km, of am-
plitude 500m and of standard deviation 3km. Note that a Gaussian ridge includes contributions
from a wide range of horizontal wavelengths. Running the script plots the vertical velocity and
streamlines.

(a) Run the script for basic-state wind u0 = 5, 20, and 120 m s−1 and discuss the resulting
wave in each case. Include vertical and horizontal propagation in your discussion. Indicate
on the graphs of streamlines the positions where clouds might be seen if the atmosphere is
close to saturation (e.g. upstream, downstream, over the ridge).

(b) Using the analytic results from class, calculate the vertical wavelength in the hydrostatic
limit for u0=5 m s−1 . Compare this vertical wavelength with what you find from running
the script for this u0. Do you think the wave is close to the hydrostatic limit?

(c) The width of the Gaussian ridge as measured by its standard deviation is 3km. For sinu-
soidal topography of wavelength 6km, use the analytic results from class to calculate the
critical u0 at which the wave doesn’t propagate in the vertical (becomes evanescent). Then
run the script for the Gaussian ridge for a range of values of u0 and estimate the critical u0 

for an evanescent wave. Is the critical value for the Gaussian ridge well predicted by the
result for the sinusoidal topography of wavelength 6km? Can you explain what sets the
critical speed for the Gaussian ridge in this domain?

(d) The script assumes that the waves are linear. By considering the magnitude of u0 , assess the
validity of the linear approximation for each of u0 = 5, 20, and 120 m s−1 (the disturbance
wind u0 is given by the variable uxz in the script).

2. In this problem, you will calculate the vertical flux of x-momentum for the case of a stationary
mountain wave. For simplicity use the Boussinesq approximation with reference density ρ.
Assume that the height of the topography is given by h = h0 cos(kx) and that the amplitude
is small. Assume also that the basic-state horizontal velocity u0 and buoyancy frequency N are
constant. In this case, we found in class that the vertical velocity of the wind in a vertically
propagating wave is

w 0 = −ku0h0 sin(kx + mz) 

with vertical component of the group velocity 

ku0m 
cgz = ,

k2 + m2 

1 



 

where m is the vertical wavenumber. The vertical velocity for an evanescent wave was 

w 0 = −ku0h0 sin(kx) exp(−rz), 

where r is real and positive. 

0(a) For the vertically propagating wave, calculate the mean vertical momentum flux ρu w0 and
show that it is constant with respect to height. For u0 > 0, what is the sign of the vertical
momentum flux? (Explain your reasoning) The constancy of the vertical momentum flux
is an important result that occurs also in more general cases as we will discuss further in
class. You should interpret the mean (·) as a mean over one wavelength in x. For example,R L w = L−1 wdx where L is the wavelength in x.0 

(b) What is the vertical momentum flux for the evanescent wave?

(c) The vertical flux of x-momentum carried vertically by the wave must be balanced by a drag
force on the mountain. This drag force, known as mountain drag, is in the x direction and it
arises due to variations in pressure on the mountain. Derive an expression for the normalized
pressure perturbation φ0 of the wave. Then make sketches versus x of the topography h and
φ0 at the surface (z = 0) for (i) the propagating wave and (ii) the evanescent wave. Explain
how the pressure variations on the different sides of the mountains are consistent with the
fluxes of momentum found in parts (a) and (b). Include the sign of the momentum flux in
your explanation.

3. This problem gives you practice thinking about log-pressure coordinates which are often used in
atmospheric dynamics. You will show how the buoyancy frequency in log-pressure coordinates
is related to buoyancy frequency in height coordinates. Let z be the log-pressure coordinate
defined in class and N the corresponding buoyancy frequency where

R Π dθ 
N2 = . 

H dz 

Here R is the gas constant, Π = (p/p0)κ is the Exner function, and H = RT∗/g is the scale height 
based on a reference temperature T∗. The buoyancy frequency in regular height coordinates 
(denoted z̃) is 

g dθ 
Ñ 2 = . 

θ dz̃  

Show that (assuming hydrostatic balance) these two frequencies are related by 

If you use the regular density in your derivation, be sure to denote it ρ̃  to avoid confusion. 
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N2 =

(
T 2

T∗
2

)
Ñ2.
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