
Course 12.812, General Circulation of the Earth's Atmosphere

Prof. Peter Stone


Section 6: Spectral Analysis 

Fourier Analysis is particularly well adapted for giving information about the scale 
dependences in any field, something that is not readily extracted from the diagnostics that 
we have looked at previously. The fields can be Fourier analyzed with respect to t, x, y, 
or z and information extracted about the corresponding scales. Most of the analyses that 
have been carried out have been concerned with the longitudinal variations, and this is 
what we will concentrate on. (In recent years some work has also been done on analysis 
of the t and y spectra.) 

Let λ = longitude, 0 ≤ λ < 2π . Then any real bounded field, ƒ , can be represented by a 
Fourier series, with n = zonal wave number: 

∞

∑A cos nλ n +

∞

∑Bn sin nλ,ƒ λ( ) = A0 +

n=1 n=1 

1 2π 1 2π 1 2π 

∫ ƒdλ, An = ∫ ƒcos nλdλ, and Bn = ∫ ƒsin nλdλ.where A0 =

2π
 π
 π
0 0 0 

It is convenient to put this representation in a complex form analogous to a Fourier 
Transform pair. If we substitute 

cos nλ = 
1 (einλ + e−inλ ) , sin nλ = 

1 (einλ − e−inλ ) ,2 2i 
⎧
⎨
⎩


−inλ
⎫
⎬
⎭


;

∞

∑ 1 1
then ƒ λ( ) = A0 +
 ( )e ( )einλ +A − iB A + iB 
2
 n n 2
 n n 

n=1 

The second summation can be written as 
∞ −∞ 

∑ 1 −inλ 1 imλ(A + iB ) e = ∑ (A−m + iB−m )e .

2 n n 2
n=1 m=−1 

∴we can write ƒ λ( ) as a single summation, 
∞ 

( ) = ∑ ( ) , where ! ( ) is a generalized Fourier coefficient,ƒ λ ƒ! n  einλ ƒ n
n=−∞ 

⎧1 (A − iB ) ,  n ≥ 1 
⎫
⎪⎪


⎪⎪2 n n 
⎪
⎪

ƒ! n ⎨A0,  n = 0 ⎬,  N.B., ƒ! −n) = ƒ! ∗ n( ) = 
⎪ ⎪ 

( ( ) , 
⎪1 (A−n + iB−n ) ,  n ≤ −1⎪

⎪ 
⎪⎩2 ⎭ 

where the asterisk here denotes the complex conjugate. 
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!

!

!

This can be written in more compact form: 

For n ≥ 1, ƒ = 
1 2

∫
π 

ƒcos nλdλ − 
i 2

∫
π 

ƒsin nλdλ = 
1 2

∫
π 

ƒe−inλdλ 
2π 0 2π 0 2π 0 

For n = 0, ƒ = 
1 2

∫
π 

ƒdλ = 
1 2

∫
π 

ƒe−inλdλ,
2π 0 2π 0 

For n ≤ −1, ƒ = 
2
1 
π 

2

∫ 
0 

π 

ƒcos (−nλ)dλ + 
2
i 
π 

2

∫ 
0 

π 

ƒsin (−nλ)dλ = 
2
1 
π 

2

∫ 
0 

π 

ƒe−inλdλ. 

∞ 2π 

∴ ƒ λ ƒ! n inλ , ƒ! n 1 ∫ ƒe−inλdλ( ) = ∑ ( )e ( ) = 
2πn=−∞ 0 

relates any real field ƒ λ ƒ n( ) to its spectral representation ! ( ) . 

Example: One drive for stationary eddies is longitudinal variations of condensation 
resulting from longitudinal variations of evaporation. For example, in winter, when the 
oceans are warmer than the land, one expects the oceans to be a much larger source of 
evaporation and condensation than the land. Suppose we assume uniform but different 
rates for evaporation and condensation over land and over ocean. What is the spectrum 
of this latent heating function, Q, -- i.e., what spectrum would we expect stationary 
eddies driven by this mechanism to have? Suppose we calculate the spectrum at 38N. At 
this latitude, the width of the oceans and continents is shown in the first line below. 

Pacific North America Atlantic Eurasia 
Observed 120° 45° 65° 130° 
Approximation 120° 60° 60° 120° 

In order to simplify our calculation we will make the approximation indicated. Then the 
distribution of Q* = Q – [Q] is as shown below. 

Figure by MIT OCW. 
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(Note that the amplitude is arbitrary since we are interested in the spectral distribution.) 
⎡2π 4π ⎤ 

∴Q! * = 
1 2

∫
π 

Q*e−inλdλ = 
1 ⎢ ∫ 

3

e−inλdλ − ∫
π 

e−inλdλ + ∫ 
3

e−inλdλ − 
2

∫
π 

e−inλdλ⎥⎥2π 0 2π⎢ 0 2π π 4π⎣ 3 3 ⎦ 
2π 4π ⎤i ⎡ −in −in 

= ⎢e 3 + e 3 −1− −1 ⎥;( )n 

πn ⎢⎣ ⎥⎦ 

The quantity in brackets is a symmetric cyclic function of u with period n = 6, and each 

successive cycle decays ~ 1 . In particular, Q! * = 
i ⎡⎣−1,−3,2,−3,−1,0,... ⎤⎦ . 

n πn 

Also we recall that Q! * = 
1 (A − iB );  n > 0 
2 n n 

and An = 0 , and the only non-trivial components, for our choice of phase, are the sine 
components; 

∴ B = 
2 ⎡⎣1,3,−2,3,1,0,... ⎤⎦ . n πn 

The magnitude of the first twelve components are tabulated below, and plotted. 

n 1 2 3 4 5 6 7 8 9 10 11 12 
1 1.5 .67 .75 .2 0 .14 .38 .22 .3 .09 0π B or 

2 n

π Q! * 

Figure by MIT OCW. 
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We see that most of the signal is in the first 4 wave numbers with the peak at wave 
number 2. This spectrum is typical of the distribution of continents in Northern mid-
latitudes, and is also typical of the spectrum of forcing due to topographic effects, since 
mountains are highly correlated with continents. 

Spectra of zonal mean quadratic terms: 
Spectral analyses of various quadratic terms are also of particular interest – e.g., what 
scales dominate in transporting heat poleward? These quantities generally involve cross-
correlations, and to illustrate their spectral analyses we will analyze the spectrum of 
⎡⎣
v ⎤⎦
. 


' 'T
 Let 
∞

∑H
n ,
 where H n  represents the contribution to H by scales with wave⎡⎣
v ' 'T
⎤⎦
=
H =

n=0 

numbers ±n . Our problem is to relate Hn to ! ' T nv (n) and ! '( ) . 

We start this time from the generalized Fourier Form: 
∞ ∞ 

v ' = v! ' n inλ ,T ' = T! ' n inλ ,∑ ( )e ∑ ( )e
n=−∞ n=−∞ 

In T' , let n = -m; 
+∞ 

∴ T' = ∑ T! (−m) e−imλ ; 
m=−∞


∞ ∞


∴ v 'T' = ∑ v! ' n T' −m)ei n−m)λ ;∑ ( ) ! ( ( 

−∞ −∞ n= m=

⎧
⎨
⎩ 

∴⎡⎣v 'T'⎤⎦ = 
n,m 

v! ' n T' −m) 2
1 
π 

2

0 

π 

e ( )dλ = 
n=

∞

−∞ 

v! ' n T' −n , since∑ ( ) ! ( ∫ i n−m ∑ ( ) ! ( ) 
2π

∫
1,  if n = m 

⎫
⎬
⎭


1
 0,  if n ≠ mi n−m e ( )dλ = 
2π
 0 

∞ −1 

∴⎡⎣v 'T'⎤⎦ = v! ' 0 T' 0 v! ' n T' −n + v! ' n T' −n ;( ) ! ( ) + ∑ ( ) ! ( ) ∑ ( ) ! ( ) 
n=1 n=−∞ 

∞ 

Now let n = −m in the second sum, and it becomes v! ' −m)T! ' m , ∴we can combine∑ ( ( ) 
m=1 

to write 
∞ 

v 'T' = v! ' 0 T' 0 v! ' n T' −n v ' −n)T! ' n⎡⎣ ⎤⎦ ( ) ! ( ) + ∑{ ( ) ! ( ) + ! ( ( ) } 
n=1 
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The n = 0 term we identify as the transport associated with time variations in the MMC. 
In Oort & Peixoto’s definition this is included in the TE transport, although in many 
studies it is not. Also, now we can identify 

H = ! ' n T' −n) + v! ' −n)T! ' nv ( ) ! ( ( ( ) for n ≥ 1 . n 

This gives the spectrum for the sensible heat transport.


It is easy to generalize this result for any quadratic quantity. E.g., if

∞ 

M = v 'u ' = M , then M = v! ' n u ' −n v ' −n u '( )n  for n ≥ 1 . M = v! ' 0 u ' 0⎡⎣ ⎤⎦ ∑ ( ) ! ( ) + ! ( ) ! ( ) ! ( ) n n 0 
n=0 

Another example: zonal mean kinetic energy, ⎡⎣K⎤⎦ = 
1 ⎡u2 + v2 ⎤

∞ 

K ;⎣ ⎦ = ∑ n2 n=0 

∴ K0 = mean K.E. = 1 u! 2 0 v2 0 };  and{ ( ) + ! ( ) 2 
1K = u n! u −n) + u! −n u n v n v −n) + v! −n v n{ ( ) ! ( ( ) ! ( ) + ! ( ) ! ( ( ) ! ( ) };n 2 

∴ K u n u −n) + ! v −n= ! v n );n ( ) ! ( ( ) ! ( 
( ) = u ( ) ,  etc., ∴ K u ( ) u! ( ) + v! ( ) v! ( ) ,  n ≥ 1And we recall u! −n * n = ! n * n n * nn 

Example: consider the heat transport by the simple v, T fields 

⎧+1, − λ0 < λ < 0⎫ 

v ' = v0 ( ) t ⎨
⎪
−1, 0 < λ < λ0 ⎬

⎪ 

⎪ ⎪ 
⎩0,  elsewhere ⎭ 

⎧+1, − λ0 < λ < 0⎫ 

T' = T0 ( ) t ⎨
⎪
−1, 0 < λ < λ0 ⎬

⎪ 

⎪ ⎪ 
⎩0,  elsewhere ⎭ 

Figure by MIT OCW. 

This can be thought of as a simple representation of a localized baroclinic cyclone, with 
the v and T anomalies in perfect phase. 
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!v n( ) = 
2
1 
π 

2

0 

π 

v λ −inλdλ = 
2
v
π 
0 

⎪⎩

⎪
⎨
⎧

−λ
∫ 
0

0

e−inλdλ − 
λ

∫ 
0

0 

e−inλ

⎪⎭

⎪
⎬
⎫ 

∫ ( )e

= − 
v0 inλ0 −inλ0 

v0 (1− cos nλ0 ){1− e − e +1} = − 
2πin iπn 

= 
2v0 sin2 nλ0 . 
πin 2 

Similarly, ! ( ) = 
2T0 sin2 nλ0 .T n
πin 2 

∴ H = ! T −n v −n T nv n ) + ! ) ! 8v0T0 sin4 nλ0 . n ( ) ! ( ( ( ) = 
π2n2 2 

λ0 

2


4⎞
⎟
⎠ 

;  at n = 
⎛
 λ0

2π 1
If λ0 ! 1, at n = 1, amp ~
⎜
⎝


. 
The first is smaller if, amp ~ 
2 
= 

π2λ0 n

λ0
2 < 

16 4 8 , λ < 
π2 0 π 

; ∴ 2λ0 < 
π 
= 146! . 

Figure by MIT OCW. 

π∴ The peak is at n = and this is large if λ0 is small, with a
λ0 

2πwave-length = = 2λ0 = width of cyclone.
π / λ0 
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Observations of Kn: The most complete analysis done to date of Kn is that of Winn-
Nielson (1967). The basic procedure is to take analyzed fields of u and v and calculate 

their transforms by numerical integration, i.e., ! ( ) = 
1 2π 

u p,φ, t )e−inλdλ, etc., areu n ∫ (2π 0 

evaluated numerically for n = 1,2,...,N  at any given time, latitude, latitude, and pressure 
level. 

The value of N chosen depends on the longitudinal resolution of the data – for the normal 
observational network in the Northern Hemisphere in mid-latitudes, resolution limits one 
to N <  15. Then one calculates Kn from the Fourier Transforms for each n. Finally, if 
desired, the values of Kn at each t,φ,p can be integrated over t,φ,p. 

Winn-Nielsen calculated Kn for each day during the year. Feb. 1963 – Jan. 1964, 
inclusive, at 8 pressure levels (1000, 850, 700, 500, 300, 200, 150, and 100mb). He used 
NMC analyses which extended from 22N to the pole. Thus the resulting Kn is essentially 
an annual average over the troposphere for mid and high latitudes. The spectrum is 
shown in Fig. 21 of Winn-Nielson (1967). It is relatively flat, for n < 6 , and then falls 
off steeply, with a nearly linear relation in logarithmic coordinates for n ≥ 8 . A least 
squares fit for 8 ≤ n ≤ 15  gave the result Kn ~ n−2.83 . 

This is particularly interesting, because it can be compared with predictions of turbulence 
theories that predict what the slope of log Kn vs log n should be in wave-number ranges 
where no energy is being generated or dissipated. (The energy generation occurs 
primarily for n < 8, due to topographic and baroclinic processes, and the dissipation 
primarily for n >> 15.) In 3-D turbulence the slope should be –5/3, and in 2-D or quasi-
geostrophic turbulence it should be -3. In fact the atmosphere appears to fall in this 
second regime. 

Turbulence Theories: 
Consider homogeneous, isotropic, 3D stationary turbulence. Assume that there is an 
inertial subrange, in which no energy is generated or dissipated. Then energy is 
conserved in this range, and must cascade from the wave numbers, where it is generated 
(presumably small wave numbers) to those where it is dissipated (by viscosity, i.e., a 
large wave number). The cascade rate (generation rate = dissipation rate) is 

dK 1 ! !ε = = constant, where K = energy density = v ⋅ v . 
dt 2 

∴ ε  has dimensions L2T−3 ; 
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The energy spectrum of Kn for an isotropic situation is only dependent on the total wave 
∞ 

number, n ! ⋅ n ! = n2,and we can write K = ∫ K ndn (analogous to our ∑ for our discrete 
0 n 

∞ ∞ 

spectra, i.e. ∑Kn → ∫ K(n)dn, but the n’s are different, this one has dimensions). 
n=0 0 

∴ K has the dimensions L3T−2 . n

According to the Kolmogorov hypothesis, Kn will depend only on _ and n (the localness 
hypothesis). ∴ dimensional arguments require: 

K = ƒ(ε,n) = αε jnk;n 

=∴ L3T−2 (L2T−3 ) j
L−k 

∴ 2 j− k = 3; − 2 = −3j 
2 4 5∴ j = ;  k = − 3 = − 
3 3 3 

∴ K = αε2/3n−5/3 
n 

This result has been verified for 3D turbulence, and experiments yield α ≅ 1.5. 

However, the situation in 2D turbulence is different. Now both energy and enstrophy, P, 
are conserved, 

P = 
1 ∇× v ! ⋅ ∇ × v. ! 
2 

∴ there are two distinct possibilities: an inertial subrange controlled by an energy 
− 5 

cascade, in which Kn again ~ n 3 , or an inertial subrange controlled by an enstrophy 

cascade. In the latter case the rate of eustrophy flow, dp = γ  will control the spectrum.
dt 

Since γ = 
dP has units T-3, dimensional arguments now require
dt 

K = ƒ(γ,n) = βγink;n 

∴ L3T−2 = T−3iL−k ;  i = 
2 ,  k = −3, 
3 

−3K = βγ n 

Experiments indicate that, when there is a 2D inertial subrange, energy cascades upscale 
and enstrophy downscale, simultaneously, in different parts of the wave number 
spectrum. 

2 
3 n
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Chamey showed that Q-G turbulence was like 2D turbulence1. This seems to explain 
Winn-Nielsen’s result. 

The above average result obscures a lot of interesting behaviors – e.g., how does Kn differ 
between winter and summer, and between SEs and TEs? If we break up the wind fields 
in our conventional manner: 
u = u + u ' = ⎡⎣u⎤⎦+ u* + u ', 

1K = (u2 + v2 ) : 2 
2 + 2uu ' + u '
2 + v2 + 2vv '1 ⎡ 2 ⎤ 1 ⎡ 

⎦⎥ = 
⎤
∴⎡⎣K⎤⎦ =
 2 + v '
2+ vu u⎣⎢
 ⎣⎢
 ⎦⎥
2
 2


+ 2⎡⎣u⎤⎦u * + u *2 +⎡⎣v + 2 v⎡⎣ ⎤⎦v *1
 1
⎡
 ⎤
 ⎡ ⎤⎤⎦ 
2 ⎤⎦ 

2 

2 ⎣⎢
⎡⎣u + v *2 '2 + v '2 

⎦⎥+ 
2 

2 2 ⎤⎡ 

=
 u⎣⎢
 ⎦⎥


21 *2 + v*2 ⎤⎦+ 
1{⎡⎣u⎤⎦ + ⎡⎣v⎤⎦ 

2 }+ 
1 ⎡⎣u2 2 

∴⎡⎣K⎤⎦ =
 ' '
+ v 
⎣⎢
u 

⎦⎥
2

∞ 

= K + K S.E.) + K T.E.mean ( ( ) = K0 + ∑Kn; 
n=1 

∴ K0 =

1


2


⎧
⎨
⎩


u 0 v 0 + u! ' 0 + v! ' 0! ( )2 
+ ! ( )2 ( )2 ( )2⎫

⎬
⎭


,


* * * *) + v

K (T.E.) = u! ' n u ' −n) + v! ' n v ' −n),  where here we have used * to indicate the SE( ) ! ( ( ) ! (n 

n 
!( )K S.E. = u (
 ( )  and−n −nn !( ) u n( ) v

component. Note that K0  contains a contribution from time variations. 

Julian et al (1970) have computed K (T.E.) for various latitudes and pressure levels.n 

They used NMC’s analyses for the wind fields. To get a winter spectrum, they used data 
for every fifth day during January and February, for 6 years (1963-1968). The results for 
500mb at 50N are shown on the next page (see Fig. 1 and 2 in Julian et al (1970)). 50N 
is the latitude where K(T.E.) peaks, and ∴ this result should be characteristic of T.E.’s. 

The winter spectrum is very similar to Win-Nielsen’s—very flat at low wave-numbers 
(the peak is actually at n = 3) and very steep at large wave numbers, with slope close to -
3. The results are similar at different pressure levels and different latitudes (in mid-
latitudes). To get a summer spectrum, they used NMC data for every 5th day during July 
and August for 5 years (1963-1967). The results for 500mb, 50N are shown in Figure 2 
of Julian et al. (1970). We see a very interesting difference in summer. Now there is a 
pronounced peak at n = 6, with the spectrum falling off at low wave numbers to ∼ 1/2 as 

1 But see Tang & Welch, 2001, JAS, 58, 2009. One must assume that the troposphere is 
bounded above – presumably the tropopause acts like a lid. 
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much kinetic energy. At high wave numbers, the spectrum still falls off sharply with 
slope ≅ −3 . Again, the results are not sensitive to latitude or level. The seasonal change 
in the total hemispheric kinetic energy in TE calculated by Peixoto and Oort (1974) from 
the 1st 5 years in the MIT general circulation library is shown in their Figure 1. 

If we put these results together, we get the relative changes in kinetic energy shown in the 
table below: 

1 ≤ n ≤ 6 7 ≤ n ≤ 18 Total 
Summer 0.57 0.40 0.97 
Winter 1.40 0.60 2.00 

Thus the main seasonal change in TE’s is a large increase in the long-wave component in 
winter which eliminates the peak at n = 6. Thus one must distinguish at least two 
different kinds of TE’s as being important: synoptic scale TE’s, which are always present 
and show rather little seasonal change; and planetary scale TE’s, which are primarily a 
winter phenomenon. 

Julian et al also calculated a low latitude spectrum, from NMC data for every day during 
March – August, 1968, for 10N, 200mb. The result is shown in their Figure 7. Because 
of the greater circumference of the earth in low latitudes they could resolve higher wave 
numbers. The low-wave part of the spectrum contrasts strongly with mid-latitudes: it 
peaks at n = 1 and falls off monotonically for higher n. The slope of the curve for large n 
is somewhat less steep than in mid-latitudes, more like -2.5 than -3. This is the only low 
latitude spectrum that has been published. 

K n  (S.E.) has been calculated by Holopainen (1970) from 40 year mean monthly maps of 
pressure-surface heights (presumably by calculating geostrophic winds from them). He 
averaged K n  over 15N – 90N latitudes and 100 – 1000mb pressures, and calculated it for 
summer and winter (although he did not say which or how many months he included in 
his definitions of these seasons). The results are shown (now on a linear scale) in Fig. 3 
of Holopainen, (1970). There is a sharp contrast with the TE’s: a strong peak at n = 1 in 
both seasons (about 50% of the total energy in 1 ≤ n ≤ 6 ) and very little energy for n ≥ 5 . 
The main seasonal change is caused by the prominence of the Aleutian and Icelandic 
lows in winter, which are ~120° of longitude apart. The seasonal change in the total 
K (S.E), calculated by Peixoto and Oort (1974) is very similar to the seasonal change in 
K (T.E.). In most months K (SE) ≅ 25% of K (TE). The only notable exception is in 
April and May when the ratio is 13%. 

Heat Flux Correlations: 
Eddy meridional sensible heat transports depend on the correlations between v and T. If 
the correlations are high, the transport is very efficient, and if they are low, it is 
inefficient. In the case of stationary eddies, whose amplitudes peak near 50N, we can 
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calculate the mean correlations using the following vertical mean statistics from Oort 
(1971, NOAA Professoral Paper #5). We find: 

January: v *T*⎡⎣ ⎤⎦= 12.3 m s( ) K, T*2 ⎡⎣ ⎤⎦= 27.3K2 , v*2 ⎡⎣ ⎤⎦= 25m2 

s2 , 

12.3∴ correlation = = 0.47 
5.22x5 

s2 

2⎡⎣
 ⎤⎦
) K, T*2 

−0.8∴ correlation = = −0.18 
2.26x2 

These correlations are consistent with the sensible heat transports which we looked at 

⎡⎣⎡ ⎦ = −0.8 m s⎤ (⎣ ⎤⎦

*2 *T* = 5.1K2July: = 4mvv ,


earlier: ⎡⎣
v *T*⎤⎦
 is very strong in winter when the SEs are very efficient at transporting 

heat, but disappears in summer, when the correlation is actually negative. Thus SE’s are 
fundamentally different in winter and summer. These results are also relevant for the 
eddies’ energy cycle (see section 8 of this course.). The energy sources for SE’s are 
shown by Holopainen’s analysis of their energy cycle (see Fig. 1 in Holopainen (1970)). 

⎤
⎦

In summer their energy source is generation of eddy available potential energy by 
diabatic heating, but in winter their source is mean available potential energy (see section 
8). Thus stationary eddies are fundamentally different in winter and summer. 

In similar fashion we can calculate the correlations associated with the transient eddy 
meridional sensible heat fluxes, again using Oort’s (1971, NPP #5) data. Using vertical 

'⎡
⎣
means at the latitudes where 'T
  peaks (60N in January and 55N in July), we have:v 

= 8.6 m s) K, ⎡⎣⎢v '2 ⎤ 126 m2 s2 ) , ⎣⎢⎡T'2 

⎦⎥
⎤ = 35.3K2( ⎦⎥ = (⎤

⎦ ' 

8.6∴correlation = = 0.13 
11.2x5.94 

⎡
⎣
January: 'T
v 

⎤
⎦

⎡
⎣

⎤
⎦ ' ⎦⎥ =⎢ ⎥ 

5.4∴ correlation = = 0.14 
9.75x4.01 

Thus the efficiency of the transient eddy flux is rather low, and is about the same in both 
reasons. Note in particular that the transient eddies are much less efficient at transporting 
sensible heat than are the stationary eddies in winter. 

⎡ ⎤⎡
⎣
 = 5.4 m s) K, (
 2= 85m2 s2 2 16.1K2July: 'T
 '
 T'
v v , ⎣⎢
 .
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Spectra of Eddy Sensible Heat Flux: Solomon (1993)2 has used 10 (9) years of ECMWF 
analyses to calculate the spectra (zonal wave number) of eddy sensible heat fluxes. 
Figure 1 in Solomon (1993) (shown below) shows the results for 51N, 850mb (the 
latitude and level of the peak) in January for the TE and total eddy sensible heat flux. We 
note that the peaks occur at n = 5 for TE’s and n = 2 for SE’s, i.e., the heat transporting 
transient eddies are very large, ~5000km wavelength. These are not the small scale 
intense cyclones. Figures 4.12 and 4.13 in Solomon (1995) (also shown below) show the 
seasonal changes. As we noted earlier, the TE changes are relatively small. Only in 
summer is there a substantial decrease. The TE’s peak at n = 5 or 6 in all seasons; the 
SE’s at n = 2. Note that SE wave numbers 1 & 2 have negative transports in summer, 
consistent with Oort & Peixoto’s result that PM is not an energy source for SE’s in 
summer (see section 8). 

From Solomon (1993). Used with permission. 

2 Only the TE spectra are included in her published1997 paper. Her earlier results are 
from her 1993 term paper in this course. 
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From Solomon (1995). Used with permission. 
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After Solomon (1997). Used with permission. 
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Figure by MIT OCW. 

The vertical distribution of eddy transports (see schematic above) actually shows two 
peaks: at 850 and 200 mb. TE’s in winter have the larger peak at 850 mb, but in summer 
at 200 mb. SE’s in winter have comparable peaks at both. Thus we need to look at 
spectra at 200 mb, as well (see Figures 4.20 and 4.21 in Solomon (1995) also shown 
below). The TE’s at 200 mb peak at n = 5 or 6 in fall or summer, as at 850 mb, but they 
peak at n = 3 in spring & winter, i.e., in those latter seasons the longer TE’s have greater 
vertical extent. In winter the SE’s peak at n = 1 and 3 at 200 mb, instead of n = 2, i.e., 
again these different wave numbers must have different attenuation properties. 
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From Solomon (1995). Used with permission. 
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After Solomon (1997). Used with permission. 
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Figures 4.1 and 4.7 in Solomon (1993) (shown below) shows results for the Southern 
Hemisphere at 850 and 200 mb. There are no appreciable SE’s, so these statistics all 
apply to TE’s. At 850 mb, like the Northern Hemisphere, the peaks are at n = 4 to 6 in all 
seasons, with a slight tendency towards higher wave numbers in summer. At 200 mb, 
again like the Northern Hemisphere, the peak in summer and fall is at n = 5 or 6, but in 
winter and spring it shifts to n = 2 or 3. Also at either level, the seasonal change is 
comparable to that for TE’s in the Northern Hemisphere, but much less than that for 
SE’s. 

From Solomon (1995). Used with permission. 
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After Solomon (1997). Used with permission. 
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