
12.815, Atmospheric Radiation 
Prof. Ronald Prinn 

Lecture:  
 
 
Thermodynamic concepts of radiation 
 
 
(a) Black-body radiation – classical theory predicted (wrongly) increasing emission with 

increasing frequency (ν) from an amorphous black surface. Quantum theory introduced by 
Planck agreed with observations. The blackbody radiation is defined by the Planck function. 
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which agrees with observation and provided the first evidence for the quantum theory  
(h = Planck constant; K = Boltzmann constant). 
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Wien law:    
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(b) ideal black body: one which is in equilibrium with the Planck distribution. It absorbs all the   
 radiation incident upon it and emits the Planck distribution for its temperature. 
 
 Practical Examples:  

 
(i) a hole in a blackened sphere (radiation entering the hole is totally absorbed and the hole 
radiates the Planck distribution). 

 
 (ii) an infinite crystal (oscillator energies are very closely spaced and possess a Boltzmann 

distribution of energy levels – solid and liquid particles, where dimensions >> wavelength of 
radiation of interest are good black bodies in regions covered by their oscillator energies – 
that is, in regions where they absorb very strongly). 

 
 (iii) a multiple scattering cloud (see later) 
 
(c) application to real gases – providing the discrete energy levels in the molecule are 

populated according to Boltzmann’s distribution, we can show these levels will be in = m 
with black body radiation. Consider an enclosed gas at constant temperature (i.e. in local 
thermodynamic equilibrium (LTE)) – consider 2 energy levels  
i (excited)  0 (ground state) ↔

 
 Rate of induced emission = Ni bi0 

i0
Iν   

 
 Rate of induced absorption = N0 bi0 

i0
Iν  

 
 where bi0 = Einstein “b” coefficient (see later) 
 

 and i0h KTi
i

0

N
g e

N
− ν=  (gi = 1 for vibrations 

       = 2J+1 for rotations) 
 
  
 For vibrations Ni << N0 (room temp.) so induced absorption far exceeds induced emission. 

Einstein argued (from the fact that molecules do not fall apart at low pressures) that the 
statistical Boltzmann distribution for energy should be maintained even at very low 
pressures where collisions do not occur. He therefore proposed the existence of 
spontaneous emission with a rate = ai0 (sec-1 ster-1). Equivalently define the radiative 
relaxation time . i0 i01 4 aτ = π
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Therefore in LTE (in absence of collisions): Therefore in LTE (in absence of collisions): 
  
           Dominant           Dominant 
 
  ( ) ( )

i0 i0i i0 i0 i0 0 i04 N b I a h 4 N b Iν νπ + ν = π  

             (total rate of emission)       (total rate of absorption) 
 
 

i. e. i0 i0

i0

i0 h KTi

0 i0 i0 i0

b IN
e

N b I a h
ν − ν

ν

= =
+ ν

 

 

i. e. 
( ) ( )

i0 i0i0

i0 i0
h KT

i0

a h
I B

b e 1
ν ν− ν

ν
= ≡

−
 

 

From time-dependent quantum theory 
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in LTE (as well as non-LTE). Also due to “broadening” of absorption and emission lines 
(discussed later) we allow for absorption or emission over a range of frequencies by 
generalizing  to ν. i0ν
 

(m2) 

  (k  = 0
0

4 N k B d
Δν

ν νπ ∫ ν ν absorption cross-section)  

 

        =
0

4 B
Δν

ν νπ

(m-1) 

dβ ν∫   ( νβ  = absorption coefficient) 

 
 
(d) Application to the real atmosphere – the atmosphere is a non-enclosed space and generally 

has external radiation (e.g. solar; thermal from ground or distant atmosphere). Clearly, 
 (as defined by TI Bν ν≠

d

local). 
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Energy Levels in molecules 
 

(a) Rotational Energies (quantum no. J=0, 1, 2, ……) 
 
For a linear molecule (e.g. CO2, N2O, O2, CO, H2, etc.) 
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               degeneracy 
 
where I = moment of inertia = 2

i i
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(b) Vibrational Energies (quantum no. v=0, 1, 2,…….) 
 
For a diatomic molecule: 
                                                                              Fundamental Frequency 

    vib 0

1 2

1 1 C 1
E v h v h

2 2 21 1
m m

⎡ ⎤
⎢ ⎥

⎛ ⎞ ⎛ ⎞⎢ ⎥= + = + ν⎜ ⎟ ⎜ ⎟⎢ ⎥π ⎛ ⎞⎝ ⎠ ⎝ ⎠⎢ ⎥+⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 

 

12.815, Atmospheric Radiation                                                                                                                  Lecture   
Prof. Ronald Prinn                                                                                                                               Page 4 of 8  

 



where potential energy = ( 2

0

1
C r r

2
− )  (“Hookes Law”), but note that a “spring” has a 

continuous set of energy states while a molecule does not. We can compare Evib to the 
amplitude of the “spring” vibration. 
 
Also Nv/N0=exp (-vhν0/KT) (Boltzmann distribution). Note ( )1 0N N exp 5 0.01−  at 

room temperature so almost all molecules in ground state. For complex molecules: 
 
Number of fundamental vibrations/frequencies 
 

  = 3N(atoms) – 3(translation) - 
( )
( )

3 nonlinear

2 linear

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 (rotation) 

 
Each fundamental vibration has a fundamental frequency νi with its own set of quantum 
numbers (vi = 0, 1, 2, etc.). Choose fundamentals using group theory or simple 
geometry so vector sets representing vibrations linearly independent : 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

12.815, Atmospheric Radiation                                                                                                                  Lecture   
Prof. Ronald Prinn                                                                                                                               Page 5 of 8  

 



Examples : 
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degeneracy 

(c) Electronic Energies 
These are also quantized but much more complex as we proceed from atoms, to 
diatomic molecules, to multiatomic molecules. 
 
e.g. for linear molecules electronic states are conveniently designated by informative 
symbols: 
 
                    (2S+1)    ( )   reflection symmetry of wavefunction 
                                  
                                   
                                       (u, g)  odd or even wavefunction 

±

 
 
 

 
orbital (wavefunction) type (shape) 
(e.g. ) , , , etc.Π Δ∑

electron spin 
quantum 
number 
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e.g. energy level diagram for O2

 

 
 
Conversions:  1ev = 8067 cm-1 = 1.24 μm (near infrared) 
  2ev = 16134 cm-1 = 0.62 μm 
  3ev = 24201 cm-1 = 0.41 μm 
  5ev = 40335 cm-1 = 0.248 μm (ultraviolet) 

(visible)
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