
Chapter 16 

Boundary layer turbulence 

Turbulence in the ocean and atmosphere is strongly affected by the presence of bound
aries. Boundaries impose severe modifications to the momentum and buoyancy bud
gets. At solid boundaries, the boundary condition that the fluid velocity is zero 
applies to both the mean velocity and to the fluctuations. Thus the turbulent fluxes 
of momentum must vanish. At the ocean free surface winds apply a stress that 
drives strongly turbulent motions. Finally, fluxes of heat, salt, and moisture at the 
boundaries can generate vigorous turbulent convection. Before discussing in detail 
the physics of planetary boundary layers in the ocean and atmosphere, it is useful to 
review some fundamental results that apply to all turbulent boundary layers. 

16.1 Frictional Boundary Layers 

Let us consider turbulence at solid boundaries. At such boundaries, the condition 
that the fluid velocity is zero applies at every instant in time. Thus it applies to the 
mean velocity and the fluctuations separately, 

ū = 0, u� = 0. (16.1) 

The fact that the fluctuations drop to zero at the wall has the particular implication 
that the Reynolds stress vanish, 

−uiuj = 0. (16.2) 

The only stress exerted directly on the wall is the viscous one. Away from the wall, 
instead, turbulence generates a Reynolds stress typically large compared to the viscous 
stress. Tritton (chapter 5, page 337) shows in Figure 21.12 the transition between 
a viscous stress and a turbulent stress in a turbulent boundary layer experiment 
(Schubauer, J. Appl. Physics, 1954). The total stress parallel to the wall does not 
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change with distance from the wall, but there is an exchange of balance between the 
viscous and turbulent contributions. 

Further reading: Tritton, chapter 21, 336–344 

16.1.1 Turbulent motions near a wall 

To simplify the algebra let us consider a parallel irrotational flow over a flat boundary. 
Turbulence is generated because the no-slip condition ū = 0 at the boundary means 
that a shear layer results, and vorticity is introduced into the flow. Boundary-layer 
flows are more complicated than free shear flows, because the importance of viscosity 
at the boundaries (which enforces the no-slip condition) introduces a new spatial scale 
in the problem. As a result there is a viscous sublayer next to the wall, whose width 
is set by viscous forces, and a high Re boundary layer, whose thickness is controlled 
by the turbulent Reynolds stresses. These two layers are separated by an inertial sub-
layer. The three different regions of the boundary layer are somewhat analogous to the 
viscous range, inertial range, and forcing ranges of isotropic, homogeneous turbulence. 

1. The viscous sublayer 
For distances close to the wall, i.e. z < zf where zf is the distance at which Re = 1, 
friction is important. This can be compared to length scales l ≈ 1/kd in homogeneous 
turbulence, where viscosity is important. 

2. The inertial sublayer 
At distances further away from the wall than zf , we can neglect viscosity. Similarly, 
if we are not close to the edge of the boundary layer at z = δ, we can assume that 
the flow will not depend directly on the size of the boundary layer. Therefore we 
have an inertial sublayer for zf << z << δ. This region is similar to the inertial 
range in homogeneous turbulence, where the flow is not affected by ν or by k0, the 
wavenumber of the energy input. 

3. The turbulent boundary layer 
The full turbulent boundary layer is determined by the maximum size of the eddies, 
the so-called the integral scale δ. This region corresponds to the forcing range of 3D 
turbulence. 

4. The ambient flow 
Finally at some distance z > δ, the flow is no longer turbulent and we are in the 
irrotational ambient flow. 

Further reading: Tennekes and Lumley, chapter 5, 147–163. 
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16.1.2 Equations of motion 

We will assume a constant background flow ū0, which is independent of distance 
along the plate x and distance normal to the plate z. We assume 2-dimensional flow 
(∂/∂y = 0), and also assume that downstream evolution is slow. If L is a streamwise 
lengthscale, we are assuming δ/L << 1, so that we can neglect variations in the 
streamwise direction compared to those in the vertical for averaged variables (i.e. 
∂/∂x = 0). Given these assumptions, the Reynolds averaged equations become, � � 

dū d dū d ̄w 
w̄ 

dz 
= 

dz 
ν 

dz 
− w�u� , 

dz 
= 0. (16.3) 

Because of the no normal flow through the boundary, we have w̄ = w� = 0 at z = 0, 
the bottom boundary. Then from eq. (16.3b) w̄ = 0 for all z. Then eq. (16.3a) 
becomes, � � 

d dū

dz 
ν

dz 
− w�u� = 0. (16.4) 

Hence if we have a stress τ given by, 

dū dū
τ = ν 

dz 
− w�u� = ν

dz 
, (16.5) 

z=0 

this stress is constant throughout the boundary layer. Near the boundary the stress 
is dominated by the viscous term. Away from the boundary we will have, 

τ = −w�u�. (16.6) 

We can define a velocity scale from this surface stress 

u 2 = τ, (16.7) ∗ 

where u is the friction velocity. Away from the boundary eq. (16.6) implies that ∗ 

u∗ is the turbulent velocity fluctuation magnitude. 

16.1.3 Viscous sublayer: law of the wall 

The frictional length scale zf is the scale at which Re = 1, i.e. the scale at which 
the viscous and turbulent stresses are of comparable magnitude. Thus the frictional 
length scale can be defined as, 

ν 
zf = . (16.8) 

u∗ 

This lengthscale determines the transition between the inertial and viscous sublayers. 
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In the viscous sublayer z < zf , the velocity must depend on z, the distance from the 
wall, u∗, the friction velocity and ν, the viscosity. We can write this relationship as, 

ū zu
= f ∗ 

(16.9) 
u ν∗ 

Note that ū has been nondimensionalized by u∗, and the distance z has been nondi
mensionalized by the frictional lengthscale ν/u∗. We can rewrite the relation in 
nondimensional form, 

ū+ = f(z +) (16.10) 

where ū+ = ¯ ∗ and z+ = zu∗/ν.u/u

Near a rough wall, the characteristic scale instead of being controlled by a frictional 
scale, it may be controlled by roughness length z0, if z0 > zf , and the self-similar 
solution in eq. (16.10) must be interpreted with z+ = z/z0. 

We can also derive the exact profile of velocity in the viscous sublayer very close to 
the wall through the following argument. At the wall, 

u = w = 0, (16.11) 

and taken in conjunction with the continuity equation, 

∂u ∂w 
+ = 0, (16.12) 

∂x ∂z 

gives, 
∂w 

= 0 at z = 0. (16.13) 
∂z 

Hence, 
du�w� d2u�w� 

= at z = 0, (16.14) 
dz dz2 

and treating the full stress as a constant in eq. (16.5), 

d2ū d3ū
= = 0 at z = 0. (16.15) 

dz2 dz3 

We thus expect there to be a significant region right next to the wall in which the 
velocity profile is linear, 

ū zu
= ∗ 

. (16.16) 
u ν∗ 

Tritton (chapter 5, pag 343) in Figure 21.17 shows that the linear profile is observed 
in experiments, next to the wall for zu∗/ν < 8. 
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16.1.4 Turbulent boundary layer: velocity defect law 

Outside the viscous sublayer, we can neglect viscosity. Thus the only dimensional 
parameters that enter in the problem are the turbulent velocity scale u∗, the total 
depth of the boundary layer δ, and the height z away from the wall. We can express 
this dependence as, � �

dū u z 
= ∗ 

g . (16.17) 
dz δ δ 

This relationship states that the mean velocity gradient, dū/dz, which is the reciprocal 
of a transverse time scale for the mean flow, has to be of order u∗/δ and varies on 
spatial scales of order δ. Notice that we cannot make a similar scaling argument for 
the mean velocity ū and say that ū = u∗g(z/δ), because the mean velocity depends 
on an additional external parameter, the velocity outside the boundary layer ū0. We 
know that for z/δ →∞, we have ū ū0.→ 

We can now integrate from z = ∞ in toward the boundary to obtain ū, 

∞ dū u ∞ z� 
dz� = ∗ 

g dz�, (16.18) 
z dz� δ z δ 

and hence, � � 
z 

ū(z) − ū0 = u∗F , (16.19) 
δ 

or in nondimensional form, 
+ + ū − ū0 = F (ζ), (16.20) 

where ζ = z/δ. This is a similarity solution for ū+ , which assumes that as the 
boundary layer changes size, or for different boundary layers ū+ has the same form. 
This similarity solution is only valid outside of the viscous boundary layer, and cannot 
satisfy the boundary condition ū = 0 at the wall. 

16.1.5 Inertial sublayer: logarithmic layer 

Thus far we have two different laws for ū+ . One applies close to the wall in the viscous 
sublayer and satisfies the no-slip condition ū = 0. The other applies further away 
from the wall and is not guaranteed to satisfy the no-slip boundary condition at the 
wall; actually it turns out that away from the wall u∗ � ū0 and thus ū − ū0 ≈ ū0. 
This indicates that the viscous sublayer with very steep gradients is required in order 
to satisfy the boundary conditions. Of course the velocity doesn’t suddenly jump 
from one scaling behavior to another - there is a transition region. In this transition 
region we expect both the law of the wall and the velocity defect law to apply. 
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From eq. (16.10) we expect that, 

dū+ df 
= . (16.21) 

dz+ dz+ 

From eq. (16.20) instead we have, 

dū+ dζ dF ζ dF 
= = , (16.22) 

dz+ dz+ dζ z+ dζ 

where we used the fact that ζ = z/δ and z+ = zu∗/ν. In this overlap region these 
two expression must be equal so, 

df ζ dF 
= , (16.23) 

dz+ z+ dζ 

and rearranging terms, 
df dF 

z + = ζ . (16.24) 
dz+ dζ 

The right hand side of eq. (16.24) depends only on ζ and the left hand side can 
depends only on z+ . This can only be true only if both sides are equal to a constant, 

df dF 1 
z + = ζ = , (16.25) 

dz+ dζ κ

where κ is the Von Karman constant. This implies that 

dū u
= ∗ 

(16.26) 
dz κz 

so that in this region the only important quantities are u and z. Then in this ∗ 

transition region, the inertial sublayer, the flow is unaware both of viscosity and of 
the size of the boundary layer δ - just as in the inertial range isotropic homogeneous 
3D turbulence is unaware of viscosity or of the integral scale of the forcing. 

Integrating eq.(16.25) we have, 

ū 1 u∗z 
= log + C1, (16.27) 

u κ ν∗ 

and , � � 
ū− ū0 

= 
1 

log 
z 

+ C2. (16.28) 
u κ δ∗ 

The region where this applies (ζ � 1, z+ � 1) is known as the logarithmic layer. 

Near a rough boundary, the equivalent of 16.27 would be, 

ū 1 z 
= log + C1, (16.29) 

u κ z0∗ 
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with z0, the roughness length, taking the place of zf = ν/u∗, the frictional lengthscale. 

Hinze (chapter 7, pag. 477) in figure 1.6.1 show the mean velocity distribution adi
ajent to a smooth wall, showing the logarithmic distribution away from the viscous 
region next to the wall and the linear region in the viscous sublayer from a composite 
of different laboratory experiments. 

The value of the Von Karman constant has been measured in a variety of labora
tory flows that indicate a universal value of 0.41. Some early measurements in the 
atmosphere (Businger et al., 1971) suggested a much smaller value of 0.35, and this 
led to speculations for a while that the constant might not be universal, but instead 
a function of salient nondimensional numbers in the flow (for example the Rossby 
number). Careful reexamination of the errors involved (Hogstrom, 1996) and more 
recent observations (Zhang, 1988) indicate that the constant is indeed a constant with 
a value around 0.40 ± 0.01. 

16.1.6 Coherent structures 

From lecture 1 we emphasized the fact that any turbulent flow involves large ed
dies with a coherent structure: turbulent boundary layers are no exceptions to the 
rule. Tritton (chapter 21, pages 344–350) reviews the observations and properties of 
coherent structures in boundary layers. 

16.2 Stratified Boundary Layers 

At a boundary, in addition to surface stresses acting as a source of vorticity, we 
may also have buoyancy forcing (for example atmospheric heating and cooling at the 
ocean surface, or radiant heating at the land surface). Whether the dynamics of the 
turbulent boundary layer are mostly affected by buoyancy forcing or by shear effects 
can be quantified in terms of the flux Richardson number, 

w�b�
Rf = . (16.30) 

u/∂z u�w�∂ ̄

We have seen in the lecture on energetics that the flux Richardson number represents 
the ratio between TKE buoyancy production and TKE shear production. Recall that 
positive values of Rf imply stable stratification, when TKE is lost to PE, and negative 
values imply unstable stratification, when PE generates TKE. Hence if Rf > 1, we 
expect the surface buoyancy fluxes to suppress the boundary layer turbulence, while if 
Rf < −1 we expect the boundary turbulence to be dominated by convective mixing, 
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rather than shear generated turbulence. For −1 < Rf < 1, the shear production of 
turbulence dominates and frictional boundary layer theory applies. 

We can express the transition between buoyancy generated turbulence to shear gen
erated turbulence also in terms of vertical length scales. Using boundary layer scaling 
we have, 

∂ū 
∂z 

= 
u∗ 

κz 
, u�w� = −u 2 

∗. (16.31) 

The flux Richardson number is then, 

κw�b�
Rf = − 

3 
z. (16.32) 

u∗ 

When |Rf | = 1, then the buoyancy production/loss of TKE is of equal magnitude to 
shear production. This occurs at a lengthscale, 

3u
Lb = ∗ . (16.33) 

κ|w�b�| 

If the buoyancy flux is supplied through a surface flux, then the minimum value of 
Lb is, 

3u
Lb = ∗ . (16.34) 

κ|w�b�0| 

This is the Monin-Obukhov lengthscale. If w�b�0 > 0 the flux is destabilizing. 
Then for distances from the boundary z < Lb, the shear production dominates, while 
for distances z > Lb, buoyant convection dominates. If w�b�0 < 0 for distances z > Lb 

the turbulence is damped by the stable stratification. 

16.2.1 The velocity profile 

In a turbulent boundary layer forced with buoyancy fluxes, velocity gradients above 
the viscous sublayer, depend on w�b�0, represented by Lb, as well as on u∗ and z. Di
mensional analysis leads to the following expanded version of the logarithmic profile, 

dū u z 
= ∗ 

φ , (16.35) 
dz κz Lb 

where φ(z/Lb) is an unspecified function. Under neutral condition, when stratification 
is neither stable or unstable, i.e. at vanishing w�b�0, hence z/Lb 0, and φ(z/Lb)→
must tend to unity. Large positive w�b�0 generates vigorous convection and reduce 
stress-induced mechanical turbulence to insignificance. At moderate positive w�b�0, 
or z/Lb of order −1, mechanical and convective turbulence are both important and 
eq. (16.35) is useful. At the other extreme, large negative buoyancy flux overwhelms 
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mechanical turbulence to the point of completely suppressing it. At moderately high 
negative w�b�0 (i.e. positive and small z/Lb), eq. (16.35) is still valid. The negative 
buoyancy flux in the TKE equation implies that work is expended into against gravity 
to raise heavier fluid up from lower levels. The PE production must balance the loss of 
TKE, resulting in less vigorous shear turbulence, and sharper mean velocity gradients. 

Boundary layer meteorologists have explored buoyancy effects on the atmospheric sur
face layer and proposed several different empirical formulae for the function φ(z/Lb), 
separately for stable and unstable conditions. A few are reported in Csanady (Air-sea 
interaction, chapter 1.4.4). 

Further reading: Tennekes and Lumley, chapters 2.5, 3.4 and 5; Lesieur, chapter 4, 
section 1.2.6; Hinze chapter 7; Phillips, chapter 6.6. 

16.2.2 The buoyancy profile 

We have seen that in turbulent flows the Reynolds fluxes of tracers like buoyancy w�b� 

are the mean vehicles of transport to or from the boundaries, just as the Reynolds 
stress is for momentum. Much alike in the case of momentum, the final step at the 
interface has to be transfer by molecular diffusion. This means that diffusive boundary 
layers develop at the boundary. Turbulent eddy motions confine these boundary layers 
to the immediate vicinity of the interface, counteracting the tendency of the diffusive 
boundary layers to grow. 

Well above the diffusive boundary layers, the influence of molecular properties be
comes imperceptible and we have an inertial sublayer. Under the same assumptions 
considered for the momentum budget, gradients of mean buoyancy then depend only 
on the buoyancy flux and the two scales of turbulence, 

db̄ 
= func(w�b�, u∗, z). (16.36) 

dz 

There are four variables in this equation, and three units of length, time, and buoy
ancy. Hence, they can be combined into a single nondimensional variable that should 
be constant. We introduce a buoyancy scale as b = −w�b�/u∗, the negative sign being ∗ 

chosen so that b∗ has the same sign as b(z) − bs, where bs is the buoyancy at the solid 
boundary. Eq. (16.36) in nondimensional form is then, 

db̄ b
= const ∗ 

, (16.37) 
dz z 

which integrates to a logarithmic law, 

b − bs 
= 

1 
log 

z
, (16.38) 

b κ δ∗ 
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where δ is the turbulent boundary layer thickness and κ in the Von Karman constant. 

The above scalings hold as long as the buoyancy fluxes are small to affect turbulent 
transport. The correction to eq. (16.39) for situations where buoyancy fluxes are not 
negligible take the form, 

d¯
� �

b b z 
= ∗ 

φb , (16.39) 
dz κz Lb 

with φb a function to be determined from observations. 

16.3 Planetary Boundary Layers 

The boundary layers in geophysical flows are also affected by rotation through the 
Coriolis force. This is discussed by Tennekes and Lumley, chapter 5.3. 
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