
Chapter 15 

Transformed Eulerian Mean 

In the last few lectures we introduced some fundamental ideas on 1) the properties of 
turbulent flows in rotating stratified environments, like the ocean and the atmosphere, 
and 2) on the transport of tracers by turbulent eddies. The goal of this chapter is to 
bring together these two bodies of literature to study the interaction of eddy motions 
with a large scale mean flow in geophysically relevant problems. 

We will consider eddies generated through instabilities of a zonal mean jet in the 
quasi-geostrophic approximation as a toy model. This is a very special example, but 
it is a useful and simple testbed to develop our intuition about these problems. 

The literature on eddy mean-slows interactions is so vast that it is impossible to give 
a comprehensive review in one lecture. Thus we will focus a few aspects of particular 
relevance in the atmospheric and oceanic context. Our goal is to show how these 
theories can be used to derive closure schemes to represent the effect of eddy motions 
on mean flows. More information on these problems can be found in the references 
given at the end of the chapter. 

15.1 The quasi-geostrophic equations on a β-plane 

Consider a flow in a Boussinesq fluid with characteristic horizontal length scale L, 
velocity U , time scale T ≥ L/U , on a β-plane for which the Coriolis parameter is 
f = f0 + βy. We make the assumption that, 

1. the Rossby number Ro = U/f0L is small, 

2. the β-effect is small, βL/f0 ≤ Ro, 
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3. the isopycnal slopes |∂xb|/|∂zb| and |∂yb|/|∂zb| are ≤ Ro (otherwise vertical mo
tions would not be small), 

4. the static stability N2 = ∂b/∂z is a function of z only. 

Under these assumptions, the leading order equations in Ro give geostrophic balance. 
Thus we can write the leading order geostrophic velocities in the Ro expansion, as, 

∂ψ ∂ψ 
u = − 

∂y 
, v = 

∂x 
, w = 0, (15.1) 

where ψ is the geostrophic streamfunction, 

ψ = 
p − p0(z) 
ρ0f0 

. (15.2) 

Hydrostatic balance gives us, 
∂ψ b 
∂z 

= 
f0 
. (15.3) 

At the next order in Ro, we obtain the prognostic quasi-geostrophic equations, 

Dgu − βyv − f0va = Gx, (15.4) 

Dgv + βyu + f0ua = Gy, (15.5) 

∂xua + ∂yva + ∂zwa = 0, (15.6) 

Dgb + N2 wa = B, (15.7) 

(15.8) 

where Dg is the time derivative following the geostrophic motions, 

Dg = ∂t + u∂x + v∂y, (15.9) 

(ua, va, wa) is the ageostrophic velocity, i.e the difference between the actual velocity 
and the geostrophic one, (Gx, Gy) is the external forcing on momentum (e.g. wind 
stress, friction, ...), and B are the nonconservative buoyancy forces (e.g. small scale 
mixing, sea-surface heat fluxes, ...). 

Using (15.4) through (15.7), we can derive the equation for the quasi-geostrophic 
potential vorticity (QGPV), q, 

Dgq = χ, (15.10) 

where, 

q = f0 + βy + ∂xv − ∂yu + f0∂z(b/N
2), (15.11) 

χ = ∂xGy − ∂yGx + f0∂z(B/N2). (15.12) 
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Eq. (15.10) tells us that for conservative flows (G = 0, B = 0) q is conserved following 
the geostrophic flow. When the flow is not conservative, χ represents the local sources 
and sinks of q, arising from viscous and diabatic effects. As you can see, the QGPV 
satisfy the advection-diffusion equation of a generic tracer. Thus we might be able to 
use the results on tracer transport in turbulent flows to study the dynamics of q. 

15.2	 Potential vorticity fluxes and the Eliassen-

Palm Theorem 

The next three sections, up to the definition of Transformed Eulerian Mean, follow 
very closely the notes of Alan Plumb on eddy-mean flows interactions. If you are 
interested in learning more on this topic, I encourage you to contact Alan and ask for 
a copy of his notes. 

Consider the small amplitude motions on a steady, zonally-uniform basic state, 

¯ ¯ ¯ ¯ū = ū(y, t), b = b(y, t), ψ = ψ(y, t),	 (15.13) 

where 
¯ ¯ū = −∂yψ, ∂y ¯	 (15.14) b = −f0∂zu. 

The mean PV is,	 � � 
f 2 

q̄ = f0 + βy + ∂y 
2ψ̄ + ∂z 

N
0
2 
∂zψ̄ .	 (15.15) 

The perturbation streamfunction and PV are given by, 

f 2 
¯	 0ψ� = ψ − ψ, q� = q − q̄ = ∂x

2ψ� + ∂y 
2ψ� + ∂z ∂zψ

� (15.16) 
N2 

Using v� = ∂xψ
�, we can also show that, 

v�q� = � · F = � · 
F
Fy

z 
= � · 

N

−
2 

u

v

�

�
v

b

�

� .	 (15.17) f0 

F is known as the Eliassen-Palm flux. Note that the northward component of F is 
minus the northward flux of zonal momentum by the eddies, u�v�, while the vertical 
component is proportional to the northward flux of buoyancy, v�b�. 

Linearizing the quasi-geostrophic potential vorticity equation (15.10), we get, 

∂tq
� + ū∂xq

� + v�∂y q̄ = χ�.	 (15.18) 
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If we multiply by q� and average, we obtain the eddy potential enstrophy equation, 

q�2 

∂t + v�q�∂y q̄ = q�χ�.	 (15.19) 
2 

This equation is the basic ingredient for the Eliassen-Palm theorem: For waves which 
are steady (∂tq�2 = 0), of small amplitude, and conservative (v�χ� = 0), the northward 
eddy PV flux vanishes (v�q� = 0) and the flux F is nondivergent. 

We can now consider the problem of how eddies impact the zonal mean circulation. 
The mean quasi-geostrophic PV budget reads, 

∂tq̄ + ∂y χ.(v�q�) = ¯	 (15.20) 

Because of the quasi-geostrophic approximation, eq. (15.20) contains no mean advec
tion term and no vertical component of eddy fluxes. 

The influence of the eddies on the mean QGPV, therefore, is entirely described by the 
northward flux v�q�. Now we know from the Eliassen-Palm theorem that if the waves 
are 1) steady, 2) conservative, and 3) of small amplitude, then F is nondivergent and 
v�q� = 0. Under these conditions, therefore, the equation for the zonally-averaged 
QGPV is independent of the eddies. An therefore the full evolution of the mean flow 
is independent of the eddies. This is known as the non-acceleration theorem. 

15.3	 Mean momentum and buoyancy budgets: con

ventional approach 

In order to fully appreciate the meaning of the Eliassen-Palm theorem, it is useful to 
consider the zonal mean of the quasi-geostrophic momentum and buoyancy equations, 

∂tū− f0v̄a = Ḡ  
x − ∂y(u�v�), (15.21) 

¯f0∂zū = −∂yb,	 (15.22) 

∂yv̄a + ∂zw̄a = 0,	 (15.23) 

∂t ̄b + w̄a N
2 = ¯ (v�b�).	 (15.24) B − ∂y

The evolution of the zonal mean state in the presence of eddies is therefore manifested 
in two terms – the convergence of the eddy flux of momentum, u�v�, and buoyancy, 
v�b�. Both these terms force the mean flow equations and it is important to note that 
the whole system is coupled, i.e., the buoyancy fluxes can impact on the mean flow, 
just as much as the momentum fluxes. Thermal wind balance (15.22) links the two. 
Consider, for example, a wave with v�b� = 0, but u�v� = 0 (as it is largely true in 
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the ocean). The mean state cannot respond with a changing mean buoyancy only; 
thermal wind balance demands a corresponding change in ū. From eq. (15.21), this 
can only be achieved through an ageostrophic meridional circulation, which would 
impact on both the momentum and buoyancy budgets. Thus, the eddies will not 

¯only drive ∂tū and ∂tb, but also v̄a and w̄a (except in the unlikely case where the eddy 
forcing terms conspire not to disturb the thermal wind balance). 

Note that the central role of the potential vorticity flux, obvious in the QGPV budget, 
is not at all obvious here. Indeed, we have seen from the potential enstrophy budget, 

¯that, under non-acceleration conditions, ∂tū and ∂tb must be zero. What must, and 
thus happen, under such circumstances, is that eddies induce an ageostrophic mean 
motion, which exactly balance the eddy flux terms in (15.21) and (15.24), i.e. eddy 
fluxes induce a mean circulation. This is reminiscent to the result that eddy fluxes of 
quasi-conserved tracers can have an advective component: in this problem the mean 
advective effect of the eddy fluxes is represented by the ageostrophic circulation. 

15.4 The Transformed Eulerian Mean Theory 

The difficulty in interpreting the balance of eddy terms and ageostrophic motions can 
be overcome by what may seem a mathematical trick, but is in fact linked to the de
composition of eddy fluxes in skew (advective) and symmetric (diffusive) components. 
The trick is to redefine the mean meridional, ageostrophic, circulation. 

Consider the mean buoyancy budget (15.24). This is (apart for the loss of some terms 
through the quasi-geostrophic assumption) the same as the Eulerian mean budget of a 
tracer equation. We saw that the eddy flux term can include an advective component. 
Under quasi-geostrophic assumptions, we can guess what that component is. 

We begin by noting that, from eq. (15.23), we may define an ageostrophic mean 
streamfunction χa, such that, 

(v̄a, w̄a) = (−∂zχa, ∂yχa). (15.25) 

We can then rewrite the mean buoyancy budget in (15.24) as, 

∂t ̄b + ∂y χa + 
v

N

�b
2 

� 
N2 = B̄ . (15.26) 

where we used the fact that N2 = N2(z), i.e. the vertical stratification does not 
change with latitude. In this form, it is quite clear that the eddy flux term can be 
represented as a mean advection, by defining an eddy induced mean streamfunction 
χc as, 

v�b�
χc = . (15.27) 

N2 

5




We now define the “residual circulation” as, 

(v̄†, w̄†) = (−∂zχ
†, ∂yχ

†),	 (15.28) 

where the new streamfunction is, 

χ† = χa + χc.	 (15.29) 

The streamfunction χ† is the so-called residual streamfunction and it represents the 
new definition of mean circulation. It is called a residual circulation, because in many 
situations χa and χc tend to oppose each other, and χ† is the residual between two 
strong circulations. If we substitute the definition in (15.27) into the mean buoyancy 
budget, we obtain, 

∂t ̄b + w†N2 = B̄ .	 (15.30) 

. 

We thus succeeded in deriving a mean buoyancy equation in which there is no explicit 
eddy term; buoyancy is transported solely through the mean vertical residual motion. 
It might be thought, of course, that the eddy terms are still there, implicit in w†. But 
this was also true of wa which, as noted earlier, is in general influenced by the eddies. 
What we have done, is to redefine this influence, so as to put the mean buoyancy 
budget into its simplest possible form. 

We can complete the transformed system of equations, 

∂tū− f0v̄
† = Ḡ  

x + � · F , (15.31) 
¯f0∂zū = −∂yb,	 (15.32) 

∂yv̄
† + ∂zw̄

† = 0,	 (15.33) 

∂t ̄b + w̄† N2 = B̄ ,	 (15.34) 

where F is the Eliassen-Palm flux. 

This transformation makes the role of eddies look quite different–even though the 
physics described by equations (15.31) through (15.34) is the same described by 
(15.21) through (15.24).	 The main advantage is that in terms of v̄†, w̄†, ∂tū, and 

¯∂tb, the only term representing the eddy forcing is �· F = v�q�. This eddy forcing ap
pears as an effective body force in the mean momentum equation. It is clear therefore 
that, under non-acceleration conditions (when �·F = 0 and the boundary conditions 
are independent of eddy dependent terms), v̄†, w̄†, ∂tū, and ∂t ̄b, are independent of 
the eddies. 

When non-acceleration conditions are not satisfied, the transformed equations offer 
a more transparent approach to the eddy-mean flow interaction problem, simply be
cause the single term represented by the effective force � · F entirely describes the 
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eddy forcing of the mean state. In fact, this formulation gives us another interpreta
tion of F , as an eddy flux of transformed negative (easterly) momentum, which is a 
more reliable measure of eddy transport of momentum than u�v� itself. 

The interpretation of F as a momentum flux may seem to be a result of mathematical 
tinkering. However, it should be remembered that the process of taking a mean is an 
arbitrary one–there is no unique way of doing it. Thus, it is legitimate to choose the 
definition of mean that simplifies the most the problem at hand. The Transformed 
Eulerian Mean equations indeed give us a clearer picture on what is going on when 
eddies interact with a mean flow. 

15.4.1 The QGPV flux and the residual Ertel PV flux 

The major advantage of the transformed Eulerian Mean formulation is that the only 
eddy forcing is the QGPV flux. We will now show that the QGPV flux is the residual 
component of the full Ertel PV flux and can thus be expected to be diffusive. 

The full Ertel potential vorticity in the quasi-geostrophic approximation is given by 
P = fN2 + fbz + ζN2 . The eddy PV flux can be computed easily, 

u�P � = fu�b�z + u�ζ �, (15.35) 

= fv�b�z + v�ζ � j + O(Ro2). (15.36) 

Thus to leading order the eddy PV flux has only an horizontal component. It is 
instructive to write the meridonal flux in the form, 

v�P � = f∂z(v�b�) + v�ζ � (15.37) 

= f
∂ v�b� 

N2 + v�ζ � (15.38) 
∂z N2 

= f
v�b� 

∂z(N
2) + fN2 ∂ v�b� 

. (15.39) 
N2 ∂z N2 

Using the fact that P̄z = ∂z(fN
2) + O(Ro) and that vz

� = f−1b�x + O(Ro) we can 
simplify the expression as, 

v�P � = 
v

N

�b
2 

� 
P̄z + N2 v�q� + O(Ro2). (15.40) 

Using this relation we can write the full Ertel PV flux as the sum of skew and sym
metric components, � � � �� � ⎛ ⎞ ⎝ N2 ⎠ 

w
v�
�
P
P 

�

� = −
0 
χc 

χ
0 
c 

P̄
0 
z 

+ 
w

v�

�
P

P 

�

� 
− 
+ 

v

v
N

�

�

b

b
2 

�

� 
P

P

¯

¯
z

y 
. (15.41) 
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To leading order this relation is,
� � � � � � � � 
v�P � 

w�P � 
= 

0 
−χc 

χc 

0 
0 
P̄z 

+ N2 v�q� 

0 
(15.42) 

In this form we see that the Ertel PV flux is composed of an advective skew component 
and a residual component, which happens to be proportional to the QGPV. In the 
lecture on passive tracer transport we emphasized that the residual flux tends to mix 
across tracer contours, while the skew component does not mix. Furthermore the 
skew component is typically much larger than the residual component. Similarly in 
this problem, the skew component advects PV around and dominates the full PV 
flux, but it is the residual flux that achieves mixing. This can be demonstrated by 
considering the QGPV variance budget, 

∂tq�2 + ∂yv�q�2 = −2v�q�q̄y + 2D.	 (15.43) 

this suggests that in steady state for homogeneous turbulence, the eddy QGPV flux 
must be down its mean gradient, 

v�q� = −Kq̄y.	 (15.44) 

15.5	 Parameterizing mesoscale motions in numer

ical models 

So far we avoided getting our hands dirty to find closures that relate the eddy fluxes to 
the mean flow. The TEM formalism is however often invoked to derive parameteriza
tions of the interaction between large-scale mean flows and small-scale transient eddy 
motions. In this section, we will use the results of TEM together with some physical 
insight to derive sets of equations where the eddy terms do not appear explicitly. Two 
approaches are used in the literature, one based on an energetic argument, and the 
other on potential vorticity mixing theory. 

15.5.1	 The energetic argument 

The energetic argument has been used to derive eddy parameterizations in the ocean 
only. Thus we will restrict our scope to ocean dynamics in this section. 

Although mesoscale eddy motions can be directly generated by external forcing, like 
the wind field, most of the mesoscale eddy energy is believed to be the result of 
instabilities in many forms (Pedlosky, 1987). The common belief is that eddies are 
generated by extracting kinetic and potential energy from the mean flow. This might 

8




� � 

� � 

� � 

not be the whole story though: in two dimensional and quasi-geostrophic turbulence, 
eddy motions can create an inverse energy cascade and return some of the energy 
back to the mean flow. The point here is that an analysis of the exchange of energy 
between mean and eddy motions might be fruitful to derive parameterizations. 

The total mechanical energy is given by the sum of the kinetic K and potential 
energies P , which in the geostrophic approximation are, 

1 1 b2 

K = (u 2 + v 2), P = . (15.45) 
2 2 N2 

Conservation of total energy takes the form, 

∂ 
[K + P ] + 

1 
) = u · G + 

N

bB 
2 
. (15.46) 

∂t 
+ u · � 

ρ0 
� · (pua

Exchange of energy between eddies and a zonal flow may be defined following the 
separation of the zonally averaged kinetic and potential energies into components 
associated with the eddy and mean motions. In the quasi-geostrophic approximation, 
this is straightforward, 

1 b̄2 

KM = 1 (ū2 + v̄2), PM = , (15.47) 
2 2 N2 � � 1 b�2 

KE = 
2
1 u�2 + v�2 , PE =

2 N2 
. (15.48) 

Let us assume once again that the basic state is a zonal flow, i.e. ū = ū(y, z, t), 
¯ ¯b = b(y, z, t), but v̄ = w̄ = 0. The equations for the mean kinetic and potential 
energies are, 

∂KM 1 
+ p̄) = b̄ ̄ u∂y(u�v�) + ū ̄  (15.49) 

∂t ρ0 
� · (ūa wa − ¯ G, 

∂PM 
+ b̄w̄a = − ̄b∂y 

v�b� 
+
b̄B ̄ 

. (15.50) 
∂t N2 N2 

The eddy terms on the rhs represent conversion of mean energy into turbulent energy 
and are often associated with instabilities of the mean flow. 

Equations (15.46) and (15.47) can be combined together in the form, 

∂ 1 
∂t

(KM + PM ) + 
ρ0 
� · (ūap̄) = 

¯
= −∂y ūu�v� + b̄

v

N

�b
2 

� 
+ u�v�∂yū+ 

v

N

�b
2 

� 
∂y ̄b + ūG ̄+ 

N

bB ̄ 
2 
. (15.51) 
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The ocean is a strongly stratified fluid and most of the energy in the basic state 
is stored as potential energy due to tilted isopycnal surfaces. This energy is con
verted into mesoscale eddy motions mainly through baroclinic instabilities. Thus 
in equation (15.48) the buoyancy eddy flux terms typically dominate over the eddy 
momentum flux terms. 

The divergent terms represent transport of eddy activity from one region to another. 
In a statistically steady state, we can assume that there is no net transport of mean 
mechanical energy out of the domain considered. Neglecting the kinetic energy loss 
terms and the divergent terms, we have that on average, 

∂ v�b� ¯(KM + PM )∼ 
N2 

∂yb + external forcing. (15.52) 
∂t

Baroclinic instability tends to extract potential energy from the mean state. The 
simplest closure that would ensure that energy is always released from the mean 
state and lost into the eddy filed is, 

¯v�b� = −K∂yb. (15.53) 

This closure scheme was first proposed by Gent and McWilliams in 1990, and it is 
now in use in most coarse-resolution ocean models. 

In terms of the TEM, this closure provide an estimate of the eddy induced circulation, 

¯∂yb 
χc = −K

N2 
(15.54) 

The parameterization of Gent and McWilliams is thus equivalent to assuming that 
the eddy induced circulation is proportional to the isopycnal slope. As long as mean 
isopycnals are tilted, there is available potential energy to drive an eddy-induced 
circulation. 

In terms of the Transformed eulerian mean formalism the parameterization of Gent 
and McWilliams is as a closure for the eddy forcing of the residual circulation, i.e., 

¯∂yb � · F ≈ −f0∂z K
N2 

. (15.55) 

In this closure the eddy stress is proportional to the isopycnal slope. In order to 
satisfy conservation of mean momentum, it is customary to impose K = 0 at the 
ocean surface and ocean bottom. 

Further reading 

Bryan K, Dukowicz JK, Smith RD, 1999: On the mixing coefficient in the parame
terization of bolus velocity J. Phys. Oceanogr.29, 2442-2456. 

10 

http:Oceanogr.29


� � �� 

Danabasoglu, G., J. McWilliams, and P. Gent, 1994: The role of mesoscale tracer 
transports in the global ocean circulation. Science, 264, 1123-1126. 

Gent, PR, McWilliams JC, 1990: Isopycnal mixing in ocean circulation models. J. 
Phys. Oceanogr., 20, 150-155. 

Green, JSA, 1970: Transfer properties of large scale eddies and the general circulation 
of the atmosphere. QJRMS, 96, 157-185. 

Griffies SM, 1998: The Gent-McWilliams skew flux, J. Phys. Oceanogr., 28, 831-841. 

Held IM, Larichev VD, 1996: A scaling theory for horizontally homogeneous, baro
clinically unstable flow on a beta plane. J. Atmos. Sci, 53, 946-952. 

Lee MM, Marshall DP, Williams RG, 1997: On the eddy transfer of tracers: Advective 
or diffusive? J. Mar. Res., 55 (3) 483-505. 

Spall MA, Chapman DC, 1998: On the efficiency of baroclinic eddy heat transport 
across narrow fronts J. Phys. Oceanogr., 28, 2275-2287. 

Stone, PH, 1972: A simplified radiative-dynamical model for the static stability of 
rotating atmospheres. J. Atmos. Sci., 29, 405-418. 

Stammer D, 1998: On eddy characteristics, eddy transports, and mean flow properties 
J. Phys. Oceanogr., 28, 727-739. 

Treguier AM, Held IM, Larichev VD, 1997: Parameterization of quasigeostrophic 
eddies in primitive equation ocean models J. Phys. Oceanogr.27, 567-580. 

Visbeck, M., J. Marshall, T. Haines, and M. Spall, 1997: On the specification of eddy 
transfer coefficients in coarse-resolution ocean circulation models. J. Phys. Oceanogr., 
27, 381-402. 

15.5.2 The potential vorticity mixing argument 

We have shown that in steady state for homogeneous turbulence, the eddy QGPV 
flux must be down its mean gradient, 

v�q� = −Kq̄y. (15.56) 

Plugging this closure in the expression for the Eliassen-Palm fluxes gives, 
¯

� · F = v�q� = −K β − ∂yy ū+ f0∂z 
∂

N
y 
2 

b
. (15.57) 

This expression for the eddy forcing of the residual circulation differs from that 
in (15.52). The two expressions are equivalent if 1) K is constant, 2) there is no 
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planetary PV gradient (β = 0), and 3) PV is dominated by the baroclinic term. 
In the ocean condition 3 is often satisfied. Condition 2 is harder to assess, because 
it depends on whether eddies mix on distances large enough to feel the effect of β. 
Condition 1 instead cannot be satisfied, because one needs to impose K = 0 at the 
boundaries in the Gent-McWilliams parameterization and therefore K cannot be con
stant. Thus the two closure schemes are different. It is open to debate which approach 
is more appropriate. A good discussion can be found in the paper by Treguier et al. 
(1997). 

Further reading: 

Adcock, S.T. and D.P. Marshall, 2000: Interactions between geostrophic eddies and 
the mean circulation over large-scale bottom topography. J. Phys. Oceanogr., 10, 
1010-1031. 

Holland W., and P. Rhines, 1980: An example of eddy-induced ocean circulation, J. 
Phys. Oceanogr., 10, 1010-1031. 

Rhines P., and W.R. Young, 1982: Homogenization of potential vorticity in ocean 
gyres, J. Fluid Mech., 122, 347-367. 
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