
Lecture Notes: Salt Fingers Ray Schmitt, Spring 05 

Stommel, Arons and Blanchard (1956) were considering the 
use of a pipe to the deep sea for use as a manometer to measure 
the pressure at the bottom of the ocean.  If filled with bottom 
waters which are typically fresher than waters above, the 
height of water in the pipe would be higher than sea level and 

thus easily observed.   
However, they noted that heat 
flow through the pipe walls 
would allow a continuous flow 
of bottom water upward, 
creating a “salt fountain” 
driven by the density contrast 
between the fresh water in the 
pipe and the saltier 
surrounding waters, once the 
temperature contrasts had 
diffused. The flow would be 
perpetual so long as the 
temperature and salinity 
contrasts between surface and 
deep water were maintained 
by solar and atmospheric 
forcing, and the pipe was 
sufficiently conductive to heat.    

Figure 1. The Salt Fountain 
Experiment of Stommel, Arons and Blanchard (1956).  They 
introduced the notion that potential energy of the salinity 
field could drive convective motions, but did not realize such 
motions could form on their own, due to the difference in the 
diffusivities of heat and salt. 



 

A few years later, Stern (1960) opened up a new field of fluid 
dynamics now known as double–diffusive convection, by 
realizing that there was a two order of magnitude difference 
between the thermal conductivity of heat (1.4 x 10-7 m2/s) in 
water and the diffusivity of dissolved salts (1 x 10-9 m2/s). This 
difference allows the ocean to form its own pipes on a 
sufficiently small scale.  The resulting “salt fingers” can be 
formed whenever warm salty water overlies cold fresh.  An 
image of laboratory salt fingers is given in figure 2. 

Figure 2. Laboratory shadowgraph of sugar-salt fingers at an 
interface between two mixed layers.  The central fingering 
interface is 3 cm thick and the fingers about 1 mm wide.  The 
shadowgraph is formed by projecting a collimated light beam 
through the fluid and imaging the pattern formed by index of 
refraction variations along the light path.   



 

  

Any density affecting constituents with differing diffusivities 
can form a double-diffusive system, a common one for 
laboratory use is the sugar-salt system, where sugar diffuses at 
one third the rate of salt.   In this case the sugar water 
represents the warm, salty water, the salt water the cold fresh. 

The instability is readily understood by considering a parcel of 
water at an interface between warm salty water sitting above 
cold fresh water.  Warm, salty parcels displaced downward 
into the cold fresh will lose heat by conduction but not much  
salt, so become cold salty and denser than adjacent water and 
continue to sink. Similarly, cold fresh parcels displaced 
upward get warmer but not much saltier and so become lighter 
that surrounding water and continue to rise.  The finger 
instability occurs at a scale at which thermal conduction can 
effectively release the potential energy in the salt field, while 
not being overly damped by viscosity, or the diffusion of salt.  
Stern (1960) identified the scale of the fastest growing finger 
as: 

 g Tα 
−1/ 4 

lF = 2π  Z  
 νκT  

This usually corresponds to a cell width (lF/2) of 2-3 cm for 
oceanic conditions, but can be considerably smaller in the 
laboratory. Note that this scaling can be related to a Rayleigh 
number of order one and is defined entirely with local internal 
parameters, as no external length scale enters the expression.  
This independence from external length scales permits  
progress in understanding the properties of salt fingers by 
study of exact similarity solutions for salt fingers in an 
unbounded region with uniform T and S gradients. 
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In the interior of such a linearly stratified ocean, it is possible 
to describe a field of purely vertical motions that remains valid 
at finite amplitude, because all the flows are parallel and the 
gradients of T and S are uniform.  The heat and salt equations 
reduce to a balance between growth, vertical advection and 
horizontal diffusion (with ∇2

2 = horizontal laplacian): 
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2
2 S (1) 

∂t 

The momentum balance is given by: 
∂w g T  ν 2

2w= (α − β S) + ∇  
∂t 

∂ρ ∂ρwhere α ≡ - ,and β ≡ .
ρ∂T ρ∂S 



We assume that a mean hydrostatic balance describes the 

pressure field and that no horizontal motions are associated 

with the initial growth of the vertical fingers. 

The solutions to the foregoing equations are the mean fields: 
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and finger perturbations: 

′ ′ ′, , w T( ˆ, Ŝ , ˆ ) exp( t) sin( kx) sin( ky) .T S = w λ 

Here λ is the exponential growthrate of the fingers, k is their 
horizontal wavenumber and the (^) represent “seed” 
amplitudes for the initial finger growth.  Here we have used 
sin(kx)sin(ky) as a simple solution to the Helmholtz equation 
∇ − φ( 2φ k 2 = 0 ) that yields square packed fingers, a planform 

that is observed in the later stages of laboratory experiments. 

Figure 4. Planform of laboratory fingers (Williams, 1975).




 

The growthrate depends on several non-dimensional 
parameters as well as the wavenumber and flux ratio of the 
fingers. There are two constants involving the diffusivities of 

ν =heat salt and momentum, the Prandtl number, Pr κT 
and 

κ 
the diffusivity ratio or Lewis number, Le =

κ 
T . For seawater 
S 

the Prandtl number is ~10 and the Lewis number ~100.  The  
main environmental parameter is the density ratio Rρ, given 
by: 

Rρ ≡ αTZ 

β SZ 

This expresses the degree to which the temperature gradient 
over-stabilizes the adverse salinity gradient; values much 
greater than one representing more stable water than those 
situations with near neutral stability (Rρ=1), where fingers can 
grow most rapidly. For much of the subtropical thermocline,  
Rρ tends to be near 2, indicating a strong propensity for salt 
fingering. The maximum density ratio at which fingers can 
grow is just the Lewis number (~100), since at that value the 
salinity gradient is too weak to overcome the damping effects 
of salt diffusion.   

An important derived parameter for salt fingers is the ratio of 
the thermal buoyancy flux to the haline buoyancy flux.  The 
flux ratio (γ) is defined as: 

w T′α ′ 
γ = 

w S′β ′ 
It can also be defined at any given wavenumber: 

γ = α ′
′ 
( )T k 


β S k( ) 

which is very useful for understanding salt finger dynamics.   



  

 

 

That is, we expect a wide finger to retain a larger thermal 
anomaly due to reduced diffusion, while very narrow fingers 
would have a lower flux ratio due to the enhanced short 
circuiting of heat between up- and down-going fingers.   
Thus, a close connection between flux ratio and wave number 
is expected. We also note that energetics places an upward 
limit for the value of the flux ratio at 1.0, since no more 
buoyancy can be gained by the heat field than is extracted 
from the salt distribution. By setting the time derivative to 
zero in equation set (1), we can examine the properties of the 
“equilibrium finger”, in which heat and salt diffusion just 
balance each other, and find that the lower limit of flux ratio at 
a given density ratio is just: 

κ αTS Z Rργ = = eq κ β S Z LeT 

Thus, at low Rρ a wide range of fingers can grow, but when Rρ 
• Le only fingers with a flux ratio near one can exist.  This 
limited range of allowable flux ratios and wavenumbers is the 
likely explanation for the increasing order displayed in finger 
planforms as experiments run down and one wavenumber 
comes to dominate the field (Figure 4).  Strongly forced fingers 
at low density ratios are much more irregular in appearance, 
and numerical simulations display increasingly chaotic and 
turbulent appearing structures as RρÆ 1. 

It is useful to examine these issues in a plot of flux ratio against 
density ratio (Figure 5). Values of flux ratio above the line 
represent growing fingers, those below are decaying fingers, 
with the equilibrium finger with λ = 0 (γ = Rρ / Le) line separating 
the two domains. 



Figure 5. Flux ratio as a function of density ratio for heat-salt 
fingers. Energetics sets an upper limit of γ = 1, where heat and 
salt anomalies cancel and there is no density anomaly to drive 
the fingers. Salt diffusion sets a lower limit of γ = Rρ/Le where 
narrow fingers diffuse enough salt to yield zero growthrate.  
No fingers can form in a uniform gradient region for Rρ > Le 
~100. 

Approximate solutions to Eq. (1) can be found in Stern (1976) 
and Kunze (1989), complete solutions are given in Schmitt 
(1979, 1983). These show that at low density ratios, the growth 
rate of the fastest growing finger varies as: 
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This expression can also be cast in terms of the local buoyancy 
frequency (N) as: 

λ �  
κ
ν 
T 
 

1/ 2 
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−1)−1/  2  −1  

where the relation N = [−g 
ρ
ρZ ]1/ 2 = [ (  αTZ Z 

1/ 2 g − β S )]  has been used. 

Figure 6 displays this dependence on density ratio. 

Figure 6. The growthrate of salt fingers for 1< Rρ <4 with 
typical values of certain water masses noted.  The growthrate 
has been scaled with the buoyancy period and is expressed in 
“e-foldings per buoyancy period”.  Fingers e-fold in 
amplitude in one buoyancy period in the central waters where 
Rρ ~2. 



The properties of the fastest growing finger are of special 
interest, as we expect those fingers to dominate the fluxes.  In 
particular the observed flux ratios in both the heat-salt and 
salt-sugar systems is in good agreement with the flux ratio of 
the fastest growing finger (Figure 7).  This is encouraging, 
given the large differences in Prandtl number and Lewis 
number. 

Figure 7. Flux ratio from laboratory data compared with the 
flux ratio of the fastest growing finger (solid curves) in the 
heat-salt and salt- sugar regimes.  The equilibrium finger with 
λ=0 is shown as a dashed line.  From Schmitt (1979). 



 

The other parameter of interest is the horizontal wavenumber, 
which is closely related to the flux ratio as explained 
previously. A spectrum of growing fingers can be estimated, 
given a seed spectrum, by evaluation of the solutions to Eq (1). 
Figure 8 shows several such spectra evaluated after different 
growth times, for a typical central water density ratio of 2. 

Figure 8. Horizontal wavenumber spectra (of temperature, 
salinity or vertical velocity) after 1, 2 and 5 buoyancy periods 
of growth from a “white noise” seed spectrum.  The density 

4αratio is 2 and the wavenumber scaling is ( g TZ νκ ) 1

. 
T 



Such theoretical spectra have shown success in predicting the 
location of the peak of the temperature gradient spectra in 
horizontal microstructure tows in a number of studies.  One 
such is shown in Figure 9 below . 

Figure 9. Horizontal wave number spectrum of temperature 
gradient for salt fingers observed at an interface between two 
mixed layers in the tropical Atlantic thermohaline staircase.  
The similarity theory predicts the fastest growing finger to be 
at 5 cm wavelength where the peak of the spectrum is 
observed. From Marmorino (1987). 



 

Thermohaline Staircases 

One of the macroscale signatures of double diffusion is the 
formation of a series of mixed layers from an initially stratified 
fluid. That is, the vertical property profiles resemble a 
staircase, with thin, high gradient interfaces separating the 
thicker well mixed layers. An example from a laboratory 
experiment with salt-sugar fingers is shown in Figure 10. 

Figure 10. Thermohaline staircase formed from initially 
uniform gradients in the sugar-salt system. 



 

Examples of a number of oceanic staircases are seen in Figure 
11. 

Figure 11. Salt finger staircases from some low density ratio 
water masses.  Only irregular steps are observed at density 
ratios above ~1.7. 



 

 

  

The mixed layers are maintained by stirring due to the net 
buoyancy flux through the interfaces, which because of the 
stronger gradients, harbor stronger finger fluxes than would 
occur in a uniform gradient. This provides one rationale for 
the existence of staircases.  That is while the transports of heat 
and salt are down their respective gradients, the net transport 
of density is against its gradient.  Thus, an initial density 
gradient becomes stronger after experiencing fingers, because 
the salinity gradient has been relaxed more strongly than the 
temperature gradient. Therefore, random increases in density 
gradient can be intensified, at the expense of adjacent weaker 
gradients. Once established, a mixed layer is easily stirred by 
the unstable buoyancy flux provided by the intensified double-
diffusive mixing occurring in the interfaces.     

Other explanations for staircases have been proposed by 
noting the collective instability arising when finger fluxes are 
redirected by internal waves (Stern, 1969) and due to the flux 
convergences arising from variations in the flux ratio with 
density ratio (Radko, 2003). The more recent theory appears 
promising because a limit on the size of layers may also be 
invoked (Radko, 2005). 

One observed feature of oceanic staircases that supports a 
double diffusive interpretation is a strikingly tight T-S 
correlation within layers that can be traced horizontally for 
hundreds of kilometers. The variations in temperature and 
salinity for the staircase of the tropical Atlantic cut across 
isopycnals with a lateral density ratio of Rl = ∇α lT / β∇l S = 
0.85. Figure 12 illustrates this phenomenon.  If flow within 
the layers is modified by vertical flux convergences due to 
fingers in the adjacent interfaces, then the T-S evolution must 
have a slope less than that of an isopycnal (Rl=1).  Due to the 
variation of the thermal expansion coefficient with 



temperature, it is elevated above the expected value of the flux 
ratio alone (McDougall, 1990). 

Figure 12. Variation of Temperature and Salinity in the mixed 
layers of the thermohaline staircase of the western tropical 
Atlantic. The black dots represent layers more than 10 m 
thick, the open circles layer between 5 and 10 meters thick.  
These trend lines cross potential density surfaces, indicating 
that a process with a heat/salt buoyancy flux ratio less than one 
is operating. Salt fingers are the only known mechanism that 
can explain this variation. 



 

The layers of the tropical Atlantic occupy an area of ~1 million 

square kilometers east of the Caribbean and are occasionally 

found within the Caribbean itself (Figure 13). 

Figure 13. Area of thermohaline staircase in the western 
tropical Atlantic in Spring 1985 (from Schmitt et al, 1987).   
The outlined area was surveyed by air-deployed XBTs.   

In order to quantify the mixing rate achieved in staircases, a 
tracer release experiment was recently performed in the 
tropical Atlantic.  175 Kg of the tracer sulfur hexaflouride 
(SF6) were injected into a mid-staircase layer with a 



 

temperature near 10oC. Nine months later a survey revealed 
the extent of vertical spread of the tracer (Figure 14). 

Figure 14. Vertical distribution of the tracer SF6 (red) after 
nine months of mixing within a thermohaline staircase.  The 
tracer was injected into the “10oC” layer in mid-staircase. 
(Schmitt et al 2005). 

The increase of the vertical spread of tracer with time provides 
an estimate of the vertical diffusivity.  If τ is the elapsed time 
between injection and sampling and σ the standard deviation 
of the tracer distribution about the mean depth, then the tracer 
diffusivity is just: 

σ 2 

=KSF6 2τ 



 

 

 

For the tropical Atlantic staircase the tracer diffusivity turns 
out to be about 1 x 10-4 m2/s. Because the tracer has nearly the 
same molecular diffusivity as salt, we expect the eddy 
diffusivity to be the same (the salt transport is advective in 
fingers). Microstructure observations in the staircase afford 
an opportunity to calibrate the models against the tracer 
dispersion data. Figure 15 shows the dissipation rate of 
thermal variance in a staircase along with the growthrate of 
salt fingers as calculated from the temperature and salinity 
profiles and the previously given formula. 

Figure 15. Profiles of temperature and salinity (left), 
dissipation rate of thermal variance (center) and salt finger 
growth rate (right), for an HRP station in the western tropical 
Atlantic.    

The finger growthrate is correlated with the log of the 
dissipation rate, in a manner consistent with the “frozen 
growth” model previously applied to salt finger spectra.  That 



is, using the exact similarity solutions for fingers in locally 
uniform gradients, the finger amplitudes vary as: 

T S w  , ,  ≈ ( ˆ, ˆ, ˆ ) exp(  λt)sin(  kx  )sin(  ky′ ′ ′ T S w  ) 

The heat flux varies as: 

w T  ≈ 1 ˆ ˆ exp(2 λ′ ′ wT  t)
4 

and the dissipation as: 
χ χ0 exp(2 λt)≈ 

ln( ) ≈ ln( χ0 ) + 2λχ t 
This simple (but incomplete) model tends to fit the data with 
elapsed times of about 2-3 buoyancy periods. 

The overall vertical eddy diffusivity for temperature appears 
to be one half as large as that for tracer and salt, based on the 
microstructure observations and the Osborn-Cox production – 
dissipation balance for thermal variance  (Schmitt et al, 2005). 
This factor of two difference in the eddy diffusivities is to be 
expected for salt fingers.   It is worth reiterating the 
production-dissipation balances predicted for turbulence and 
salt fingers: 

Turbulence (Osborn, 1980; Osborn and Cox, 1972) (with flux 
Richardson number, Rf = 0.17 ± 0.03): 
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Salt fingers (McDougall, 1989) (with Rρ = 1.7 and flux ratio γ = 0.75 ): 

Rρ −1 ε εKS = 2 ≈ 2.8 21−γ N N 

KS = 
Rρ χθ 

2 ≈ 2.3Kθγ 2θ z 

Kθ = χθ 
2

2θ z 

These relationships show that fingers are much more 
“efficient” in mixing as compared to turbulence, as little of the 
energy derived from the salt field is dissipated, and more used 
to mix the temperature field.  This accounts for the order of 
magnitude difference in the multiplier for ε/N2 . 

We can also examine the behavior of the “scaled dissipation 
ratio” (Γ ) introduced by Oakey (1989).  It is defined as: 

N 2 χΓ =  22θ εZ 

R 
For turbulence we expect Γ =  

1− R
f 

f 

0.2 , for fingers we predict T � 

Γ = 
 Rρ −1 γ  � 0.4 −0.7F  R  1−γ  . St Laurent and Schmitt (1999)
 ρ   

have examined the variation of Γ for oceanic microstructure in 
both double-diffusive and doubly-stable regimes by mapping 
its variation in a parameter space defined by the gradient 
Richardson number and the density ratio (Rρ) and found 
elevated Γ in the low density ratio, high Richardson number 
regime. (Figure 16). 



 

Figure 16. The scaled dissipation ratio as a function of Density 
Ratio and Richardson Number for microstructure 
observations with the High Resolution Profiler in both Atlantic 
(finger favorable) and Pacific (doubly stable) thermoclines.  
(St. Laurent and Schmitt, 1999) 

In all of the doubly-stable regime the observed dissipation ratio 
is consistent with the expected value for turbulence.  However, 
when the density ratio gets below two at higher Richardson 
numbers, an elevation of Γ is seen, consistent with salt 
fingering. 

The evidence for salt finger activity at lower density ratios as 
seen in occurrence of microstructure and the appearance of 
thermohaline staircases, the near order of magnitude increase 
in tracer dispersion between the North Atlantic Tracer Release 
Experiment (St Laurent and Schmitt, 1999) (Rρ∼1.8) and the 
recent tropical Atlantic experiment (Schmitt et al, 2005) 
(Rρ∼1.6), as well as basic theory and laboratory experiments, 
suggests that oceanic mixing due to salt fingers is a strong 
function of the density ratio. Such a variation combined with 



the greater transport of salt than heat, suggests a mechanism 
to directly affect the density ratio structure of the thermocline.   
There are two main effects: 1. the density ratio will tend to 
increase with time as the greater flux of salt than heat 
preferentially weakens the vertical salt gradient and,  2. any 
vertical variations in density ratio can produce flux 
convergences that tend to remove the density ratio anomaly.  
These can be explored with a density-ratio dependent mixing 
coefficient as in Schmitt (1981).   The first effect is a likely 
explanation for the relative rarity of density ratios close to one 
outside of the surface layer (Ruddnick and Ferrari, 1999), it is 
most often close to two in the “central waters” of the 
subtropical gyres (Figure 17).   

Figure 17. Histogram of Rρ for the upper kilometer of the 
Atlantic at 24oN. Rρ is computed over a 50 db vertical window 
from all CTD stations in a 24 N section (Schmitt, 1990). 



 

 

The second effect is a powerful mechanism for producing 
“constant Rρ” T-S correlations.  That is, any anomaly in Rρ is 
quickly removed by the flux convergences as illustrated with a 
one-dimensional model run in Figure 18. 

Figure 18. Temperature salinity diagram for the decay of a 
perturbation over one month, due to the density ratio 
dependent mixing rate predicted for salt fingering (Schmitt, 
1981). 

Thus, centimeter-scale salt fingers may be effective in 
influencing the large-scale mean structure of the thermocline. 



  

Other fluid systems 

Finally, since other geophysical regimes beyond the ocean may 
also support salt fingers, it is worth exploring their properties  
in a variety of fluid systems.   The complete solutions of 
Schmitt (1979, 1983) permit such exploration, and a few results 
are illustrated in Figures 19 and 20.   

Figure 19. The growth rate of salt fingers at a density ratio of 
one for a wide range of Prandtl numbers and diffusivity ratios.  
Parameter ranges of various fluid systems are noted, these 
represent stellar interiors (SI), liquid metal (LM), magmas 
(M), oceanic heat/salt (H/S), salt/sugar (S/S), atmospheric 
heat/humidity (H/H), and semiconductor oxides (SCO).  The 
viscous systems of sugar/salt and magmas are seen to be slow 
growing, while the low Prandtl number stellar interiors and 
liquid metal regimes have faster growth (Schmitt, 1983). 



Figure 20. Flux ratio of the fastest growing finger at a density 
ratio of 2.  The low Prandtl number systems have low flux ratio 
and the high Prandtl number systems have a flux ratio near 
0.5, except where a low diffusivity ratio raises the flux ratio for 
all Prandtl numbers. 

Some work has already been done on double diffusion in 
magmas and stars, and there is speculation that double-
diffusive processes are active on other planets and moons in 
our solar system. Perhaps such calculations will prove useful 
in exploring and understanding the geophysical fluid dynamics 
of the atmospheres, oceans and interiors of other bodies in the 
solar system. 
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