
QG Turbulence and Waves 

The quasigeostrophic equation contains a num
geophysical flows, while retaining some of the simpl

ber of essential features of large scale 
icity of 2D flow. We assume that the 

system is rapidly rotating and hydrostatic, so that the vertical vorticity equation becomes 

with C = (-v,,ll.,,() and the P-plane approxin~ation f = f,,+By. We assume that C is 
sinall compared to f (Ro= C/ f << 1) though it nYay be similar in size to 6f / f = PL/ f .  
In that case the term C . Vw is order (1f compared to f g u i .  Thus the vortex stretching 
is dominantly associated with fluid columns suffering extension along the rotation axis. 

We can in general represent a nondivergent flow as 

a a aand we choose a gauge such that z$l+ -g2 = 0 so that = gd and g2= --$a?] ax . 
Then 

For near-geostrophic balance, 
1* u = - Z X V ? ,
f 

am .the divergence 1s order DL/ f times the vorticity. Thus the vorticity equation becomes 

-C
3 + J($,C + by) = f -lri 

a + disa
3t  32 

aA aB aA aBwith J (A,  B) = z F  -qzand C = V2+ 

The buoyancy equation can also be simplified by neglecting the divergent part of the 
horizontal flow and noting that &b/N2 is order ((1f)(f2L2/N2H2;for synoptic/ mesoscale 
flows the last factor is order one. Thus 

a aUsing b = ~p = f z$ and combining gives the QG equation 

-q 
3 + .J($,q) = di.s.s/heat
3t  


with 

3 f 2  3 

q=V2$+---$+BYDz N2Dz 



The QG equations determine the evolutioil of a scalar property, the approximate 
potential vorticity q ,  under advection by the horizontal flow u = i x V$. Although the 
movement of PV is treated two-dimensionally at a given depth, the flow is related to the 
PV structure at nearby depths. 

Conserved properties 

The QG equations preserve energy 

and potential enstrophy 

Indeed, they conserve the average of any function of the PV, not just the square, so that 
we have to worry about whether or not the energy and entrophy tell the whole story. 

The /3 term also can have importailt consequences, depending on the boundaries. If 
we represent 

rl=Lli,+Py 

In the doubly-periodic case with uniform buoyancy on the top and bottom bouildaries 
(&$ = 0) the only surviving term is 

the one which can be thought of as Jd3x K2E. We'll talk about other cases later. 

Charney (1971) argues that for small enough scales in the interior of the atmosphere, 
we call treat N 2  as constant: rescale z* = N z / f ,  and transform the L operator into V:$. 
All of the arguments for upscale energy transfer and downscale enstrophy transfer apply. 
so that the spectrum should be 

just as in the 2-D case. In addition, the theory predicts equipartition of energy among the 
Ir: 11; and bf / N  fields. Demos, Page 2: Data <Gage and Nastrom, 1986> 



FjijrtijR1sargurrlent; 

Fjiirtiift's (1953) argument can also be applied to the 3D QG flow problem. Suppose 
we have unit energy at  a net waveilumber K such that 

and we wish to transfer it elsewhere through illviscid iilteractions. Let a fraction al go to 
larger scales (K/2)and a2 to smaller scales 2K. Then our energy and enstrophy pictures 
look like 

Wavenuinber K/2 

Init. energy 0 1 0 
Init. enstrophy 0 K2 0 

Final energy a1 1- a l p  a2 * z  
Final enstrophy K2a1/4 K2(1 - a1 - a2)  K24a2 

If we conserve both energy and enstropl~y by this interaction (i.e., we're in an inertial 
range), we find a1 =4az so that 

Init. energy 0 1 0 
Init. enstrophy 0 K 0 

Final energy 4a2 1 - 5a2 az 
Final enstropl~y K2az  K2(1 - 5a2) K24a2 

More energy is transferred to large scales and more enstrophy to sinall scales. Indeed the 
center of the energy is now at  wavenumber K ( 1  az) and the center of the enstropl~y is at 
K(1 f 3 . 5 ~ ~ ) .  R.emember that in the cascade to  larger scale) the vertical scale can increase 
- the flow can become inore barotropic. 



Beta effects 

Demos, Page 3:  be ta  runs <beta=O> <beta=O> <beta=l> <beta=l> 
<beta=5> <beta=5> 

Note that these arguments make no mention of the variation of the Coriolis parameter 
with latitude, P. While it is true that the P-effect does not make the QG equations 
inhomogeneous (the full equations or the shallow water equations are a different matter)) 
it does make the dynamics anisotropic. R.otation by 90 degrees alters the form of q .  R.hines 
showed that turbulence on the P-plane has a profoundly different charater, developing 
zonal bands of flow. He used the barotropic vorticity equation (the & = 0 case of the 
QG equation, though the BTVE is actually an exact representation of 2-D motion on a 
P-plane) 

The dyilainics now iilcludes both turbulence and waves riding on the large-scale poten- 
tial vorticity gradient p. The evolution of the flow beconles at some point a problem of 
interacting waves rather than nlultiple-scale energy transfers. 

We can see that this will happen at some scale by considering the parameter measuring 
iloillinear versus wave effects - the wave steepness S = U/c. Since the phase speed for 
R.ossby waves is -,!3/k2: S = Uk2/p. For a k:-3 energy spectrum, we have the velocities 
proportional to k p l  and the steepness behaves like k. Therefore: we expect the P-effect 
will have little influence on the short waves, but that the long waves will have restoring 
forxes which are as significant as the turbulent transfers. The scale a t  which this transition 
occurs should be when the steepness is order one, or L N = E ~ / ~ , ! Y ~ / ~ .  

Alternatively, we could view the effects of the turbulence as mixing the PV and at- 
tempting to  homogenize it. But this can only be done over narrow latitude bands. Suppose 
we start with an initial eddy energy density E. If we hoinogenize the PV over width W,  
the zonal mean flow looks like 

- U 	
3 +Py = const. = 0 for -W/2 < y < W/2
3~ 

so that U = ,!3y2/2- PW2/24. The energy density for this flow is 

If we used all the initial energy and put it into zonal flow, we'd have 

Two things prevent this froin happening; not all of the energy goes into the waves and the 
interactions become very slow as wave processes dominate. 

Demos, Page 4 :  Means <psi> <q> 



Baroclinicity 

The transfer to large scale occurs in both horizoiltal and vertical directions. Therefore, 
we expect the energy in the gravest vertical mode (F= 1; A,) = 0) to dominate after a 
while. We can expand q' = L?i,and ?i, in the vertical eigenfunctions 

with 
r = v , ,- A2?i, ,,, 

The F ,  functions are the eigenfunctions of the vertical operator 

Then the energy is 

E = -[/%,!,$,,, = EO+ El + Ez... 

Demos, Page 5: Two vertical mode case <pv> <psi> <energies> 


Spectral space transfers 

Let us transform the streanlfunction to wavenumber space 

li, = $(k,  t,na, t)  exp(zk.r + dy)F,,,, (z) 

q' = i(k,t,7n,,t)  exp(zk.r + zty)F,,, (2) 

We introduce a shorthand ?i,? = $ ( k : ,  t,A,!,, t )  so that each different subscript j corresponds 
to a different set of {k:, !; na) values. The streainfunction is related to the poteiltial vorticity 
by 

q? = ( k ;  + t; + - K;g1 

Now we can project out the equation for the amplitude of one mode by multiplying 
the equation by F,,,, (2) exp(-zk2 . x) and volunle averaging 

with the definition k3 = k l  - kz. 



Let us look at one set of wavenumbers k l ,  k2,  k3 and choose the labelling such that 
K: < K: < K;. The dynamics of this triad is given by 

This triad conserves energy and enstrophy iilterilally 

From the triad equations, we also have 

Energy leaving component 2 will transfer into both 1and 3; when it does so, the average 
scale (CKjEj /  C E,)-' increases; however, oilly the triads with K: - Kg > Kg - K; 
will actually put inore energy into the larger scale mode than the smaller scale one. 

Demos, Page 6 :  Example <(0,0,0)t r i a d s >  <sigma> 

STABILITY:If we start with energy in the second component, we can calculate the 
rate at which it goes to other components by looking at the growth rate. We assume 

and 

so that the perturbation problem becomes 



The growth rates are determined by 

when the amplitude is small, the growth rate will be nonzero only in the regions where 

Demos, Page 6: Resonance <phi=O; beta=O> <beta=O. 5> <beta=l> <beta=2: 
<beta=5> 

Demos, Page 7: Resonance-angle <phi=30;beta=O> <phi=45;beta=O> 
<phi=60; beta=O> <phi=30; beta=2> <phi=45; beta=2> <phi=60; beta=2> 

Demos, Page 7: Resonance-modes <(0,0,0)> <(1,1,0)> <(0,1, I)> 
<(1,1,0)> <(0,1,1)> 


