
Baroclinic Turbulence 

Two layer model 

We have the two PV eqliations 

q' = v2~,' -f F($;  $ 4 )  
Here F = f;lg1H and (I),, = P - Uy, & F ( U ~-u2). 

The zonal average eqliations are 

The omega eqliation becomes 

-
with R = v'q' + F - T U ,  

We shall arrange the forcing to produce a linifornl vertical shear so that Uj  + U j  +Uj.  
The backgrolind PV gradients are 

The Rayleighl Charney-Stern theorem gives a necessary condition for instability: the 
gradient Qg nnist change sign either in the horizontal or in the vertical; this will occur 
when 

Ui -U2 < -PIIFI OT Ul -U2 > P2IF2 

Note the asynlnletry between eastward vs. westward shear in the ocean where we typically 
take F2 N $F1: we require ~nlich more eastward shear to destabilize the flow. 

To solve; we take q' = qexp(zk . x + ot)with $I defined similarly. from the PV 
specification, we have 

,ji = L ~ ~ * ~*i,,T = ~ 7 . 1 6 .  
Z? 3 



The dynamical eqiiation becomes 

(a+p)Gi = -zkUiGi - t k&yiq i  + r k 2 &  

This is a standard eigenvahie problem 

z k ~ ~ t - l +  q[-zkU - k 2 ~ t - l ]  = (a+p)q 

except the rnatrix is complex. The U, Qy,  and R matrices are diagonal (with the latter 
having Rll = 0, R22 = T). For the two-layer model, 

and 
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Other 1)roblrrns 

The Eady model jiist has a different L: if slibscript 1is the top and 2 is the bottom, 
then 

sinh K z  sinh K (H- z )* = *'sinh KH + *' sinh KH 
awith K = -N/ f .  The active scalars are ql = z $ H  and 42 = $go and 

L =  (	K co thKH -KcschKH 
KcschKH -K coth K H  
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Cessation of growth 

The linear problenl predicts exponential growth even with frict,ion; to stop this, the 
nonlinearity nnist enter at some point. This co~ild occiir in the form of divergent eddy PV 
fliixes . . 

which alter the mean PV and therefore the mean U fields. In tlirn, the linear part of the 
fliictiiation eqn. changes and the growth rate can drop. 

The mean field approximation disclissed previolisly relies on this mechanism. Becaiise 
of channel walls, the growing modes have 

qi = &(t)cos(kx - Bi) sin(!y) 

and the phases differ between the two q's and therefore between the dl's and q's. In that 
case: the u' will not be in qiiadratnre with the q'. The linear soliit,ion predicts a PV flux 
proportional to sin(2ey) which tries to eliminate the negative Qy gradient in the center of 
the channel. 
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Resitlual circulation 

We can compare the residiial circ~ilation, represented by 4, to the Elilerian mean 
meridional flow, which we can represent by 

These are for F = 100: P = 0.1. 
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<PV gradients> <mean PV gradients> <phi> <phia> <mean> 


In this case the divergence of the eddy fl~ixes vanishes, so there is no feedback on the 
mean. The linearly growing wave is an exact sohition to the fully nonlinear eq~iations: if 

then the inversion implies 41' = g(<) with 

But the nonlinear term is now 

Pedlosky (1975) and Pedlosky and Polvani (1987) suggest that the growing wave can 
itself becorne iinstable to other waves which then remove the energy. We can illlistrate this 
by using a wave triad in which the middle wavm~irnber is the baroclinically iinstable one 
while the smaller and larger ones are stable. 

The indices are triad minlber: these need to be solved in each layer so that there are 12 
degrees of freedom (6 cornplex q's). 
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The fill1 sollition shows this breakdown and the development of tiirb~ilence. With 
these parameters, there are zonal means with amplitlides (at the end) of about 113 the 
rnaxinnirn zonal velocity. 



Upper bounds 

Shepherd (1988, JAS) develops an lipper boimd for the wave enstrophy based on the 
nonlinear stability theory o f  Arnol'd. It's worthwhile starting from that point since it can 
give insight into nonzonal systenls as well. 

Essentially we want t o  derive a fiinctional which has vanishing derivative at the basic 
stat,e and then determine i f  it has a mininliim, maximiim, or saddle point there. In ther 
first two cases, the basic state will be stable. For the linearized problem siich a fiinctional 
can be derived directly and is proportional t o  the square o f  t,he perturbation amplitiide ( in  
the instable case having indeterminate sign for the coefficients at varioiis wavemimnbers). 

W e  start witah the PV equation and split it into basic stat,e and fliictiiation 

W e  presiin1e we can take Q = Qf and that the corresponding satisfies 

For the channel with Qf depending on y ,  this is straightforward. This relationship implies 

Then  we can write the linearized stability problem as 

The  pertiirbation enstrophy satisfies 

while the total energy obeys 

The  first eqiiation implies 



So that the Arnol'd invariant simply decays with time. 

We thus obt,ain the two theorems: 
Unstable flows imply t,hat t,heenergy and enstrophy are growing in time; this can only 
happen if the second term can offset the first. Thus, if Qq > 0 everywhere, the flow 
is stable. 
If Qg is everywhere negat,ive, the flow can still be nnstable if t,he available waveniim-
hers are so large that A is negative definite. 

For nonlinear stability, we define the Hamiltonian fimctional 

and a so-called Casirnir 

Cbl = / / q ~ ( s ) d s  

under the asslimption that P is rnonotonically increasing (and ignoring the boundary terms 
- see Shepherd, Adv. in Geopllys; 32, 287-338 for a more fornlal derivation). Then 

&[nl = H[ql -H[Q1+ C[ql -C[121 

is conserved, is equal to zero when q' = 0 and its first variation also vanishes (it's q~iadrat~ic 
in q'). E is called the "pse~idoenergy."If, therefore, 

0 < Cmin < Pg < Cma:c 

and 
$ ' 2  = E + C m i n Z  

then 
ma:,;

ll*'(t)l12 5 -lld~'([))l12
Cmin 

- t,he flow is nonlinearly stable. 
For flows witahtranslational invariance, the pse~idornoment,~im 

is also conserved. Y(Q) is the inverse of Q(y). The stability theorern now states that 

For small amplitude, the psiiedornornent~imbecomes the negative of the wave activity 



Bounds 

Shepherd considers the flow t o  be a stable zonal shear plus a deviation which inchides 
a zonal shear which shifts the total into the instable range phis the wave distlirbance 

This derivation follows Shepherd (and Held's suggestion) dirctly except the layer depths 
are not presiimed t o  be eqiial. For the Phillip's problem, we take U t o  be mif form. T h e n  

and the conservation follows directly 

For Q; > &', > 0 , we have 

The  PV gradients o f  the background flow are 

and the PV's o f  the renlainer are 

The  right-hand side o f  the inequality (assliming the waves start o f f  at infinitesimal 
anlplitlide) becomes 

1-(u -u)' [ H ~ F :+ 
24 P - F2U 

since H I F l  = H2F2. W e  want t,o minimize this siibject t,o 



(Shepherd uses U > 0 but that doesn't, seem necessary). 
We have either 

PU = 2- -U (weak s~i~ercriticality) 
F z  

For the first case 
1 1  @Hz 
-
2 H 
- H~Y':+H~Y':5 - 8)  

and for strong shear 

For the run shown (U = 1;F1 = Fz= 100, P = lo),  this works out to about 250(?). 
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