
20  6. Discrete Fourier Analysis 

The expression (4.2) shows that the Fourier transform of a discrete process is a function of exp (�2�lv) 
and hence is periodic with period 1 (or 1@�w for general �w)= A finite data length means that all of the 

information about it is contained in its values at the special frequencies vq = q@W= If we define 

} = h�2�lv�w (6.1) 

Continued on next page...
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the Fourier transform is 
W@2 X 

{̂ (v) =  {p}
p (6.2) 

p= �W@2 

¡
¡ ¢ 
h�2�lv ˆ { > ˆWe will write this, somewhat inconsistently interchangeably, as { (v) > ˆ { (}) where the two ¢ 

h�2�lv { (v) is clearly not the same function as ˆ > but the context should latter functions are identical; ˆ { 

make clear what is intended. Notice that {̂ (}) is just a polynomial in }> with negative powers of } 

multiplying {q at negative times. That a Fourier transform (or series—which di�ers only by a constant  

normalization) is a polynomial in exp (� 2�lv) proves to be a simple, but powerful idea. 

Definition. We will use interchangeably the terminology “sequence”, “series” and “time series”, for 

the discrete function {p, whether it is discrete by definition, or is a sampled continuous function. Any 

subscript implies a discrete value. 

Consider for example, what happens if we multiply the Fourier transforms of {p> |p : 
3 43 4 Ã !

W@2 W@2 X X X X 
{ (}) ˆ = k (}) = (6.3)ˆ | (}) = C {p}

pDC |n}
nD = {p|n�p }

n ˆ

p= �W@2 n= �W@2 n p 

That is to say, the product of the two Fourier transforms is the Fourier transform of a new time series, 

X4
kn = {p|n�p> (6.4) 

p=�4 

which is the rule for polynomial multiplication, and is a discrete generalization of convolution. The 

infinite limits are a convenience–most often one or both time series vanishes beyond a finite value. 

More generally, the algebra of discrete Fourier transforms is the algebra of polynomials. We could 

ignore the idea of a Fourier transform altogether and simply define a transform which associates any 

sequence {{p} with the corresponding polynomial (6=2) > or formally 

W@2 X 
{p}

p (6.5){{p} #$ Z ({p) � 
p= �W@2 

The operation of transforming a discrete sequence into a polynomial is called a }� transform. The 

transform coincides with the Fourier transform on the unit circle |}| = 1= If we regard } as a general }� 

complex variate, as the symbol is meant to suggest, we have at our disposal the entire subject of complex 

functions to manipulate the Fourier transforms, as long as the corresponding functions are finite on the 

unit circle. Fig. 8 shows how the complex v� plane, maps into the complex }� plane, the real line in the 

former, mapping into the unit circle, with the upper half-v� plane becoming the interior of |}| = 1  

There are many powerful results. One simple type is that any function analytic on the unit circle 

corresponds to a Fourier transform of a sequence. For example, suppose 

{̂ (}) = Dhd} (6.6) 
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Figure 8. Relationships between the complex } and v planes. 

Because exp (d}) is analytic everywhere for |}| ? 4> it has a convergent Taylor Series on the unit circle µ ¶
{̂ (}) =  D 1 + d} + d2 }

2 

+ ==== (6.7)
2! 

and hence {0 = D> {1 = Dd> {2 = Dd2@2!> ===Note that {p = 0>p  ?  0. Such a sequence, vanishing for 

negative p> is known as a “causal” one. 

Exercise. Of what sequence is D sin (e}) the }�transform? What is the Fourier Series? How about, 

{̂ (}) =  
1 

> d  A  1> e  ?  1? (6.8)
(1� d}) (1� e}) 

This formalism permits us to define a “convolution inverse”. That is, given a sequence, {p, can  we  

find a sequence, ep> such that the discrete convolution 

X X 
en {p�n = ep�n {n = �p0 (6.9) 

n n 

where �p0 is the Kronecker delta (the discrete analogue of the Dirac �)? To find ep> take the }�transform 

of both sides, noting that Z (�p0) =  1> and we have 

ê (}) {̂ (}) =  1  (6.10) 

or 
1

ê (}) =  (6.11)
{̂ (}) 

But since {̂ (}) is just a polynomial, we can find ê (}) by simple polynomial division. 
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Example. Let {p = 0>p  ?  0> {0 = 1> {1 = 1@2> {2 = 1@4> {p = 1@8> === What is its convolution 

inverse? Z ({p) = 1 + }@2 + }2@4 + }3@8 + ==== So 

1 
{̂ (}) = 1 + }@2 + }2@4 + }3@8 + ==== = 

1� (1@2) } 
(6.12) 

ˆ =so e (}) = 1� (1@2) }> with e0 = 1> e1 1@2> ep = 0> otherwise.�

Exercise. Confirm by direct convolution that the above ep is indeed the convolution inverse of {p = 

This idea leads to the extremely important field of “deconvolution”. Define 

X X4 4
kp = iqjp�q = jqip�q = (6.13) 

q= q=�4 �4 

Define jp = 0>p  ?  0; that is, jp is causal. Then the second equality in (6.13) is 

X4
kp = jqip�q > (6.14) 

q=0 

or writing it out, 

kp = j0ip + j1 ip�1 + j2ip�2 + ==== (6.15) 

If time w = p is regarded as the “present”, then jq operates only upon the present and earlier (the past) 

values of in ; no future values of ip are required. Causal sequences jq appear, e.g., when one passes a 

signal, in through a linear system which does not respond to the input before it occurs, that is the system 

is causal. Indeed, the notation jq has been used to suggest a Green function. So-called real time filters 

are always of this form; they cannot operate on observations which have not yet occurred. 

In general, whether a }�transform requires positive, or negative powers of } (or both) depends only 

upon the location of the singularities of the function relative to the unit circle. If there are singularities 

in |}| ? 1> a Laurent series is required for convergence on |}| = 1;  if all of the singularities occur for 

|}| A 1> a Taylor Series will be convergent and the function will be causal. If both types of singularities 

are present, a Taylor-Laurent Series is required and the sequence cannot be causal. When singularities 

exist on the unit circle itself, as with Fourier transforms with singularities on the real v-axis one must 

decide through a limiting process what the physics are. 

Consider the problem of deconvolving kp in (6.15) from a knowledge of jq and kp> that is one seeks 

in = From the convolution theorem, 

ˆ
= k (}) ˆî (}) =  

k (}) ˆ d (}) = (6.16)
ĵ (}) 

Could one find in given only the past and present values of kp? Evidently, that requires a filter d̂ (}) 

which is also causal. Thus it cannot have any poles inside |}| ? 1= The poles of d̂ (}) are evidently the 

zeros of ĵ (}) and so the latter cannot have any zeros inside |}| ? 1= Because ĵ (}) is itself causal, if it 

is to have a (stable) causal inverse, it cannot have either poles or zeros inside the unit circle. Such a 

sequence jp is called “minimum phase” and has a number of interesting and useful properties (see e.g., 

Claerbout, 1985). 
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As one example, consider that it is possible to show that for any stationary, stochastic process, {q> 

that one can always write it as X4
{q = dq�q�n > d0 = 1  

n=0 

where dq is minimum phase and �q is white noise, with ? �2 A= �2. Let  q be the present time. Then q � 

one time-step in the future, one has 

X4
{q+1 = �q+1 + dq�q�n = 

n=1 

Now at time q> �q+1 is completely unpredictable. Thus the best possible prediction is 

X4
{̃q+1 = 0 +  dq�q�n = (6.17) 

n=1 

with expected error, 

? (˜ 2 
q 

2{q+1 � {q+1) A=? �
2 A= � = � 

It is possible to show that this prediction, given dq> is the best possible one; no other predictor can have 

a smaller error than that given by the minimum phase operator dq = If one wishes a prediction t steps 

into the future, then it follows immediately that 

X4
{̃q+t = dn �q+t n > �

n=t 

t X 
{q+t � {q+t )

2 
A= � 2? (˜ d2 

� n 
n=0 

which sensibly, has a monotonic growth with t= Notice that �n is determinable from {q and its past values 

only, as the minimum phase property of dn guarantees the existence of the convolution inverse filter, en > 

such that, X4
�q = en {q�n > e0 = 1= 

n=0 

Exercise. Consider a }�transform 
1ˆ (6.18)k (}) =  

1� d} 
and find the corresponding sequence kp when d $ 1 from above, and from below. 

It is helpful, sometimes, to have an inverse transform operation which is more formal than saying 

“read o� the corresponding coe!cient of }p)= The inverse operator Z�1 is just the Cauchy Residue 

Theorem I 
1 { (})ˆ

{p = 
}p+1 

g}= (6.19)
2�l |}|=1 

We leave all of the details to the textbooks (see especially, Claerbout, 1985). 
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The discrete analogue of cross-correlation involves two sequences {p> |p in the form 

X4
u� = {q|q+� (6.20) 

q=�4 

which is readily shown to be the convolution of |p with the time-reverse of {q = Thus by the discrete 

time-reversal theorem, 

u (v) = ˆF (u� ) = ˆ { (v)� |̂ (v) = (6.21) 

Equivalently, 

µ ¶
1 

û (}) = {̂ |̂ (}) = (6.22)
} ¡ ¢ 

} = h�2�lvû = �{| (v) is known as the cross-power spectrum of {q> |q = 

If {q = |q> we have discrete autocorrelation, and µ ¶
1 

û (}) = {̂ {̂ (}) = (6.23)
} ¡ ¢ 

} = h�2�lv{ (}) has poles and zeros, ˆNotice that wherever ˆ { (1@}) will have corresponding zeros and poles. û = 

�{{ (v) is known as the power spectrum of {q = Given any û (}) > the so-called spectral factorization problem 

{ (}), ˆconsists of finding two factors ˆ { (1@}) the first of which has all poles and zeros outside |}| = 1> and 

the second having the corresponding zeros and poles inside. The corresponding {p would be minimum 

phase. 

= 0> 1= Then ˆ { (1@}) =  1 + 1@ (2}) >Example. Let {0 = 1> {1 = 1@2> {q = 0> q  6 { (}) =  1 + }@2> ˆ

û (}) = (1 + 1@ (2})) (1 + }@2) = 5@4 + 1@2 (} + 1@}) = Hence �{{ (v) = 5@4 + cos (2�v) = 

Convolution as a Matrix Operation 

Suppose iq> jq are both causal sequences. Then their convolution is 

X4
kp = jqip�q (6.24) 

q=0 

or writing it out, 

k0 = i0j0 (6.25) 

k1 = i0j1 + i1j0 

k2 = i0j2 + i1j1 + i2j0 

=== 

which we can write in vector matrix form as 
6565 ;

AAAA? 

<
AAAA@ 

AAAA> 

k0 j0 0 0 0 = 0 

j1 j0 0 0 = 0 

i099997 

::::8 
= 

99997 

::::8 

k1 

k2 

i1 

i2 

>AAAA= 
j2 j1 j0 0 = 0 

= = = = = = = = 
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or because convolution commutes, alternatively as 

6565 ;
AAAA? 

<
AAAA@ 

AAAA> 

k0 i0 0 0 0 = 0 

i1 i0 0 0 = 0 

j099997 

99997 

::::8 
= 

::::8
k1 

k2 

j1 

j2 

>AAAA= 
i2 i1 i0 0 = 0 

= = = = = = = = 

which can be written compactly as 

h = Gf = Fg 

where the notation should be obvious. Deconvolution then becomes, e.g., 

f = G�1h> 

if the matrix inverse exists. These forms allow one to connect convolution, deconvolution and signal 

processing generally to the matrix/vector tools discussed, e.g., in Wunsch (1996). Notice that causality 

was not actually required to write convolution as a matrix operation; it was merely convenient. 

Starting in Discrete Space 

One need not begin the discussion of Fourier transforms in continuous time, but can begin directly 

with a discrete time series. Note that some processes are by nature discrete (e.g., population of a list 

of cities; stock market prices at closing-time each day) and there need not be an underlying continuous 

process. But whether the process is discrete, or has been discretized, the resulting Fourier transform is 

then periodic in frequency space. If the duration of the record is finite (and it could be physically of 

limited lifetime, not just bounded by the observation duration; for example, the width of the Atlantic 

Ocean is finite and limits the wavenumber resolution of any analysis), then the resulting Fourier transform 

need be computed only at a finite, countable number of points. Because the Fourier sines and cosines 

(or complex exponentials) have the somewhat remarkable property of being exactly orthogonal not only 

when integrated over the record length, but also of being exactly orthogonal when summed over the same 

interval, one can do the entire analysis in discrete form. 

Following the clear discussion in Hamming (1973, p. 510), let us for variety work with the real sines 

and cosines. The development is slightly simpler if the number of data points, Q> is even, and we confine 

the discussion to that (if the number of data points is in practice odd, one can modify what follows, or 

simply add a zero data point, or drop the last data point, to reduce to the even number case). Define 

W = Q�w (notice that the  basic time duration is not  (Q � 1) �w which is the true data duration, but has 
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one extra time step. Then the sines and cosines have the following orthogonality properties: 

cos s�w cos s�w
W W 

s=0 

¶ µ ¶1 µQ �X 2�n 2�p 
= 

;
AA? 

AA= 

0 n 6= p 

Q@2 > n = p 6= 0> Q@2 (6.26) 

Q n = p = 0> Q@2 ¶ µ ¶ (
1 µQ �

= pX 2�n 2�p 0 n 6
sin s�w sin s�w = > (6.27)

W W Q@2 n = p 6= 0> Q@2 s=0


1 µ
 ¶ µ ¶Q �X 2�n 2�p 
cos s�w sin s�w = 0= (6.28)

W W 
s=0 

Zero frequency, and the Nyquist frequency, are evidently special cases. Using these orthogonality prop-

erties the expansion of an arbitrary sequence at data points p�w proves to be: 

¶ µ ¶Q@2 1 µ ¶ Q@2 1 µX Xd0 
�

2�np�w 
�

2�np�w dQ@2 2�Qp�w 
{p = + dn cos + en sin + cos > (6.29)

2 W W 2 2W 
n=1 n=1 

where ¶1 µX2 
Q �

2�ns�w 
dn = {s cos > n  = 0> ===> Q@2 (6.30)

Q W 
s=0 

1 µ ¶X2 
Q �

2�ns�w 
en = {s sin > n  = 1> ===Q@2 1= (6.31)

Q W 
� 

s=0 

The expression (6.29) separates the 0 and Nyquist frequencies and whose sine coe!cients always 

vanish; often for notational simplicity, we will assume that d0> dQ vanish (removal of the mean from a 

time series is almost always the first step in any case, and if there is significant amplitude at the Nyquist 

frequency, one probably has significant aliasing going on.). Notice that as expected, it requires Q@2 + 1  

values of dn and Q@2 1 values of en for a total of Q numbers in the frequency domain, the same total� 

numbers as in the  time-domain.  

Exercise. Write a computer code to implement (6.30,6.31) directly. Show numerically that you can 

recover an arbitrary sequence {s= 

The complex form of the Fourier series, would be 

Q@2 X 
{p = �n h

2�lnp�w@W (6.32) 
n= �Q@2 

1 X1 
Q �
{sh

�2�lns�w@W =�n = (6.33)
Q 
s=0 

This form follows from multiplying (6.32) by exp (�2�lpu�w@W ) > summing over p and noting (
1Q �X 
h(n u)2�lp�w@W ¡ ¡Q> n = u ¢ = (6.34)� = ¢ 

h(2�l(n u)) h(2�l(n u)@Q ) 
p=0 1 � � @ 1 � � = 0> n  6= u 
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The last expression follows from the finite summation formula for geometric series, 

1Q �X 1 uQ 

dum = d 
� 

= (6.35)
1 u 

m=0 
� 

The Parseval Relationship becomes 

1 Q@2 X X1 
Q �

2{2 = |�n | = (6.36)
Q p 
p=0 n= �Q@2 

The number of complex coe!cients �n appears to involve 2 (Q@2) + 1 = Q + 1  complex numbers, or 

2Q + 2  values, while the {p are only Q real numbers. But it follows immediately that if {p are real, 

that � n = �
�
n , so that there is no new information in the negative index values, and �0> �Q@2 = � �Q@2�

are both real so that the number of Fourier series values is identical. Note that the Fourier transform 

values,{̂ (vq) at the special frequencies vq = 2�q@W> are 

{̂ (vq) = Q�q> (6.37) 

so that the Parseval relationship is modified to 

1 Q@2Q �X 1 X 
{2 2 = |{̂ (vq)| = (6.38)p Q 

p=0 n= �Q@2 

To avoid negative indexing issues, many software packages redefine the baseband to lie in the positive 

range 0 � n � Q with the negative frequencies appearing after the positive frequencies (see, e.g., Press 

et al., 1992, p. 497). Supposing that we do this, the complex Fourier transform can be written in 

vector/matrix form. Let }q = h
�2�lvq w, then  

6565 ;
AAAAAAAAA

<
AAAAAAAAA

{̂ (v0) 1 1 1 = 1 {0 = 
9999999997 

9999999997 

:::::::::8 

= 

:::::::::8 

}1 }2 = }Q 
1 1 1{̂ (v1) 

{̂ (v2) 

= 

{̂ (vp) 

1 {1 

{2 

= 

{t 

= 
? @

AAAAAAAAA

}1 }2 = }Q 
2 2 21 = 

= (6.39)AAAAAAAAA

= = = = = = 

1 }1 }2 = }Q 
p p p = >= 

= = = = = = = = 

or, 

x̂ = Bx> (6.40) 

The inverse transform is thus just 

x = B�1 x̂> (6.41) 

and the entire numerical operation can be thought of as a set of simultaneous equations, e.g., (6.41), for 

a set of unknowns x̂= 
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The relationship between the complex and the real forms of the Fourier series is found simply. Let 

�q = fq + lgq> then for real {p> (6.32) is, 

Q@2 

{p = (fq + lgq) (cos (2�qp@W ) + l sin (2�qp@W )) + (fq � lgq) (cos (2�qp@W )� l sin (2�qp@W )) 
q=0 

Q@2 X 
= {2fq cos (2�qp@W )� 2gq sin (2�qp@W )} > (6.42) 
q=0 

so that, 

dq = 2Re (�q) > eq = �2 Im(�q) (6.43) 

and when convenient, we can simply switch from one representation to the other. 

Software that shifts the frequencies around has to be used carefully, as one typically rearranges the 

result to be physically meaningful (e.g., by placing negative frequency values in a list preceding positive 

frequency values with zero frequency in the center). If an inverse transform is to be implemented, 

one must shift back again to whatever convention the software expects. Modern software computes 

Fourier transforms by a so-called fast Fourier transform (FFT) algorithm, and not by the straightforward 

calculation of (6.30, 6.31). Various versions of the FFT exist, but they all take account of the idea that 

many of the operations in these coe!cient calculations are done repeatedly, if the number, Q of data 

points is not prime. I leave the discussion of the FFT to the references (see also, Press et al., 1992), and 

will only say that one should avoid prime Q> and that for very large values of Q> one must be concerned 

about round-o� errors propagating through the calculation. 

Exercise. Consider a time series {p> �W@2 � p � W@2, sampled at intervals �w= It is desired to 

interpolate to intervals �w@t> where t is a positive integer greater than 1. Show (numerically) that an 

extremely fast method for doing so is to find {̂ (v) > |v| � 1@2�w> using an FFT, to extend the baseband 

with zeros to the new interval |v| � t@ (2�w) > and to inverse Fourier transform back into the time domain. 

(This is called “Fourier interpolation” and is very useful.). 




