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9. Fourier Series as Least-Squares 

Discrete Fourier series (6.29) are an exact representation of the sampled function if the number of 

basis functions (sines and cosines) are taken to equal the number, Q> of data points. Suppose we use a 

number of terms Q 0 � Q> and seek a least-squares fit. That is, we would like to minimize 
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Taking the partial derivatives of M with respect to the dp and setting to zero (generating the least-squares 

normal equations), and invoking the orthogonality of the complex exponentials, one finds that (1) the 

governing equations are perfectly diagonal and, (2) the dp are given by precisely (6.29, 6.30). Thus we can 

draw an important conclusion: a Fourier series, whether partial or complete, represents a least-squares 

fit of the sines and cosines to a time series. Least-squares is discussed at length in Wunsch (1996). 

Exercise. Find the normal equations corresponding to (9.1) and show that the coe!cient matrix is 

diagonal. 

Non-Uniform Sampling 

This result (9.1) shows us one way to handle a non-uniformly spaced time series. Let { (w) be sampled 

at arbitrary times wm . We  can  write  
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where %m represents an error to be minimized as 
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or the equivalent real form, and the normal equations found. The resulting coe!cient matrix is no longer 

diagonal, and one must solve the normal equations by Gaussian elimination or other algorithm. If the 
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record length and/or Q 0 is not too large, this is a very e�ective procedure. For long records, the com-

putation can become arduous. Fortunately, there exists a fast solution method for the normal equations, 

generally called the Lomb-Scargle algorithm (discussed, e.g., by Press et al., 1992; an application to 

intermittent satellite sampling of the earth’s surface can be seen in Wunsch (1991)). The complexities of 

the algorithm should not however, mask the underlying idea, which is just least-squares. 

Exercise. Generate a uniformly spaced time series, {w> by specifying the coe!cients of its Fourier 

series. Using the Fourier series, interpolate {w to generate an irregularly spaced set of values of { (wm ) = 

Using { (wm ) and the normal equations derived from (9.3), determine the Fourier components. Discuss their 

relationship to the known ones. Study what happens if the { (wm ) are corrupted by the addition of white 

noise. What happens if the observation times wm are corrupted by a white noise error? (“White noise” is 

defined below. For present purposes, it can be understood as the output of an ordinary pseudo-random 

number generator on your computer.) 

Irregular Sampling Theorems 

There are some interesting theoretical tools available for the discussion of infinite numbers of irreg-

ularly spaced perfect samples of band-limited functions. A good reference is Freeman (1965), who gives 

explicit expressions for reconstruction of band-limited functions from arbitrarily spaced data. Among 

the useful results are that any regularly spaced sample which is missing, can be replaced by an arbitrary 

irregularly spaced sample anywhere in the record. The limiting case of the expressions Freeman shows, 

would suggest that one could take all of the samples and squeeze them into an arbitrarily brief time 

interval. This inference would suggest a strong connection between band-limited functions and analytic 

functions describable by their Taylor Series (regarding closely spaced samples as being equivalent to first, 

second, etc. di�erences). Related results permit one to replace half the samples by samples of the deriva-

tives of the function, etc. The reader is cautioned that these results apply to infinite numbers of perfect 

samples and their use with finite numbers of inaccurate data has to be examined carefully. 

Some useful results about “jittered” sampling can be seen in Moore and Thomson (1991), and Thom-

son and Robinson (1996); an application to an ice core record is Wunsch (2000). 




