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9. EOFs, SVD 

A common statistical tool in oceanography, meteorology and climate research are the so-called em-

pirical orthogonal functions (EOFs). Anyone, in any scientific field, working with large amounts of data 

having covariances, is almost inevitably led to EOFs as an obvious tool for reducing the number of data 

one must work with, and to help in obtaining insight into the meaning of the covariances that are present. 

The ubiquity of the tool means, unfortunately, that it has been repeatedly reinvented in di�erent scientific 

fields, and the inventors were apparently so pleased with themselves over their cleverness, they made no 

attempt to see if the method was already known elsewhere. The consequence has been a proliferation 

of names for the same thing: EOFs, principal components, proper orthogonal decomposition, singular 

vectors, Karhunen-Loève functions, optimals, etc. (I’m sure this list is incomplete.) 

The method, and its numerous extensions, is a useful one (but like all powerful tools, potentially 

dangerous to the innocent user), and a brief discussion is o�ered here. The most general approach of 

which I am aware, is that based upon the so-called singular value decomposition (e.g., Wunsch, 1996 and 

references there). Let us suppose that we have a field which varies, e.g., in time and space. An example 

(often discussed) is the field of seasurface temperature (SST) in the North Pacific Ocean. We suppose 

that through some device (ships, satellites), someone has mapped the anomaly of SST monthly over the 

entire North Pacific Ocean at 1� lateral resolution for 100 years. Taking the width of the Pacific Ocean 

to be 120� and the latitude range to be 60� each map would have approximately 60×120 = 7200 gridded 

values, and there would be 12×100 of these from 100 years. The total volume of numbers would then be 

about 7200×1200 or about 9 million numbers. 

A visual inspection of the maps (something which is always the first step in any data analysis), would 

show that the fields evolve only very slowly from month-to-month in an annual cycle, and in some respects, 

from year-to-year, and that much, but perhaps not all, of the structure occurs on a spatial scale large 

compared to the 1� gridding. Both these features suggest that the volume of numbers is perhaps much 

greater than really necessary to describe the data, and that there are elements of the spatial structure 

which seem to covary, but with di�erent features varying on di�erent time scales. A natural question 

then, is whether there is not a tool which could simultaneously reduce the volume of data, and inform 
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one about which patterns dominated the changes in space and time? One might hope to make physical 

sense of the latter. 

Because there is such a vast body of mathematics available for matrices, consider making a matrix 

out of this data set. One might argue that each map is already a matrix, with latitude and longitude 

comprising the rows and columns, but it suits our purpose better to make a single matrix out of the 

entire data set. Let us do this by making one large column of the matrix out of each map, in some way 

that is arbitrary, but convenient, e.g., by stacking the values at fixed longitudes in one long column, one 

under the other (we could even have a random rule for where in the column the values go, as long it is 

the same for each time–this would just make it hard to figure out what value was where). Then each 

column is the map at monthly intervals, with 1200 columns. Call this matrix E, which is of dimension 

P =number of latitudes times the number of longitudes by Q> the number of observation times (that is, 

it is probably not square). 

We now postulate that any matrix E can be written 

E = U�VW (9.1) 

that is as the product of three matrices. � is a P × Q diagonal matrix (in a generalized sense for a 

non-square matrix). Matrix U is square of dimension P> and V is square of dimension Q= U> V have 

the special properties of being “orthogonal”, 

W = IQ > V
WUUW = IP > U

W U = IP > VV V = IQ (9.2) 

that is to say, in particular the columns of U are mutually orthonormal, as are the columns of V (so are 

the rows, but that proves less important). IQ is the identity matrix of dimension Q> etc. The matrices 

U> V>� can be shown, with little di!culty to be determined by the following relations: 

2 1>ull =� 

That is to say, the columns of U are the eigenvectors of EEW > and the columns of V are the eigenvectors 

of EW E= They are related to each other through the relations, 

Evl =�lul>1 � l � Q> Eul =�lvl> 1 l P= (9.4)� � 

Note that in (9.3,9.4), P> Q are in general di�erent, and the only way these relationships can be 

consistent would be if all of the �l = 0> l  A  min (P> Q) (this is the maximum number of non-zero 

eigenvalues; there may be fewer). By convention, the �l and their corresponding ul> vl are ordered in 

decreasing value of the �l = 

Consider EW E in (9.3) This new matrix is formed by taking the dot product of all of the columns of E 

with each other in sequence. That is to say, EW E is, up to a normalization factor of 1@P> the covariance 

of each anomaly map with every other anomaly map and is thus a covariance matrix of the observations 

through time and the vl are the eigenvectors of this covariance matrix. Alternatively, EE
W is the dot 

product of each row of the maps with each other, and up to a normalization of 1@Q is the covariance of 

WEE 2 1>vlll P> EW l � Q= (9.3)Evlul =�� � � 
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the structure at each location in the map with that at every other point on the map; the ul are thus the 

eigenvectors of this covariance matrix. 

Consider by way of example, EW E= This is a square, non-negative definite matrix (meaning its 
2eigenvalues are all non-negative, a good thing, since the eigenvalues are the �l , which we might hope 

would be a positive number). From (9.1, 9.2), 

Q X 
2 WEW E = V� 2VW = �l vlvl > (9.5) 

l=1 

Eq. (9.5) is an example of the statement that a square, symmetric matrix can be represented exactly in 

terms of its eigenvectors. Suppose, only N � Q of the �l are non-zero. Then the sum reduces to, 

N X 
2 W 2EW E = �l vlv = VN �N V

W (9.6)l N > 
m=1 

where �N is truncated to its first N rows and columns (is now square) and VN contains only the first n 

columns of V= Now suppose that some of the �l are very small compared, e.g., to the others. Let there be 

N0 of them, much larger than the others. The question then arises as to whether the further truncated 

expression, 
N0 X 

2 W 2EW E �l vlv = VN0 �N0 V
W (9.7)� l N0 > 

l=1 

is not still a good approximation to EW E? Here, VN0 consists only of its first N0 columns. The assump-

tion/conclusion that the truncated expansion (9.7) is a good representation of the covariance matrix 

EW E> with N0 ?? N is the basis of the EOF idea. Conceivably N0 is as small as 1 or 2, even when there 

may be hundreds or thousands of vectors vl required for an exact result. An exactly parallel discussion 

applies to the covariance matrix EEW in terms of the ul. 

There are several ways to understand and exploit this type of result. Let us go back to (9.1). 

Assuming that there are N non-zero �l, it can be confirmed (by just writing it out) that 

N X 
WE = UN �N V

W = (9.8)N �lulvl 
l=1 

exactly. This result says that an arbitrary P × Q matrix E can be represented exactly by at most N 

pairs of orthogonal vectors, where N � min (P> Q) = Suppose further, that some of the �l are very small 

compared to the others Then one might suppose that a good approximation to E is 

N0 X 
UN �N0 VWE � N0 = �lul v W = (9.9)l 

l=1 

If this is a good approximation, and N0 ?? N> and because E are the actual data, it is possible that only 

a very small number of orthogonal vectors is required to reproduce all of the significant structure in the 

data. Furthermore, the covariances of the data are given by simple expressions such as (9.7) in terms of 

these same vectors. 
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The factorizations (9.1) or the alternative (9.8) are known as the “singular value decomposition”. 

The �l are the “singular values”, and the pairs (ul> vl ) are the singular vectors. Commonly, the vl are 

identified as the EOFs, but they can equally well be identified as the ul; the choice is arbitrary, depending 

only upon how one seeks to interpret the data. 

Eq. (9.9) can be discussed slightly di�erently. Suppose that one has an arbitrary E= Then if one 

seeks to represent it in O pairs of orthonormal vectors (ql> rl) 

O X 
E � �lqlr Wl > (9.10) 

l=1 

then the so-called Eckart-Young-Mirsky theorem (see references in Wunsch, 1996) states that the best 

choice (in the sense of making the norm of the di�erence between the left and right-hand sides as small 

as possible), is for the(ql> rl) to be the first O singular vectors, and �l = �l. 

Exercise. Interpret the Karhunen-Loève expansion and singular spectrum analysis in the light of the 

SVD. 

Exercise. (a) Consider a travelling wave | (u> w) = sin  (nu + �w) > which is observed at a zonal  set  

of positions, um = (m � 1)�u at times ws = (s � 1)�w= Choose, n> �> �u> �w so that the frequency and 

wavenumber are resolved by the time/space sampling. Using approximately 20 observational positions 

and enough observation times to obtain several temporal periods, apply the SVD/EOF analysis to the 

resulting observations. Discuss the singular vectors which emerge. Confirm that the SVD at rank 2 

perfectly reproduces all of the data. The following, e.g., would do (in MATLAB) 

» x=[0:30]’;t=[0:256]’; 

» [xx,tt]=meshgrid(x,t); 

» sigma=2*pi/16;k=2*pi/10; 

» Y=sin(k*xx+sigma*tt); 

» contourf(Y);colorbar; 

(b) Now suppose two waves are present: | (u> w) = sin  (nu + �w) + sin((n@2) u + (�@2) w)= What are 

the EOFs now? Can you deduce the presence of the two waves and their frequencies/wavenumbers? 

(c) Repeat the above analysis except take the observation positions um to be irregularly spaced. What 

happens to the EOFs? (d) What happens if you add a white noise to the observations? 

Remark 3. The very large literature on and the use of EOFs shows the great value of this form of 

representation. But clearly many of the practitioners of this form of analysis make the often implicit 

assumption that the various EOFs/singular vectors necessarily correspond to some form of normal mode 

or simple physical pattern of change. There is usually no basis for this assumption, although one can 

be lucky. Note in particular, that the double orthogonality (in space and time) of the resulting singular 

vectors may necessarily require the lumping together of real normal modes, which are present, in various 
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linear combinations required to enforce the orthogonality. The general failure of EOFs to correspond to 

physically interpretable motions is well known in statistics (see, e.g., Jolli�e, 1986). A simple example 

of the failure of the method to identify physical modes is given in Wunsch (1997, Appendix). 

Many extensions and variations of this method are available, including e.g., the introduction of 

phase shifted values (Hilbert transforms) with complex arithmetic, to display more clearly the separation 

between standing and travelling modes, and various linear combinations of modes. Some of these are de-

scribed e.g., by von Storch and Zwiers (1999). Statistics books should be consulted for the determination 

of the appropriate rank and a discussion of the uncertainty of the results. 




