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3. The Sampling Theorem 

We have seen that a time-limited function can be reconstructed from its Fourier coe!cients. The 

reader will probably have noticed that there is symmetry between frequency and time domains. That is 

to say, apart from the assignment of the sign of the exponent of exp (2�lvw) > the v and w domains are 

essentially equivalent. For many purposes, it is helpful to use not w> v with their physical connotations, 

but abstract symbols like t> u= Taking the lead from this inference, let us interchange the w> v domains in 

the equations (2.6, 2.13), making the substitutions w $ v> v $ w> W $ 1@�w> {̂ (v) $ { (w) =. We  then  have,  

{̂ (v) =  0> v  1@2�w (3.1)� 

X4
{ (p�w) 

sin (� (p � w@�w))
{ (w) =  

� (p � w@�w)
p=�4 X 

= 
4
{ (p�w) 

sin ((�@�w) (w � p�w)) 
= (3.2)

(�@�w) (w � p�w)
p=�4 

This result asserts that a function bandlimited to the frequency interval |v| � 1@2�w (meaning that its 

Fourier transform vanishes for all frequencies outside of this baseband ) can be perfectly reconstructed by 

samples of the function at the times p�w= This result (3.1,3.2) is the famous Shannon sampling theorem. 

As such, it is an interpolation statement. It can also be regarded as a statement of information content: 

all of the information about the bandlimited continuous time series is contained in the samples. This 

result is actually a remarkable one, as it asserts that a continuous function with an uncountable infinity 

of points can be reconstructed from a countable infinity of values. 

Although one should never use (3.2) to interpolate data in practice (although so-called sinc methods 

are used to do numerical integration of analytically-defined functions), the implications of this rule are 

very important and can be stated in a variety of ways. In particular, let us write a general bandlimiting 

form: 
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{̂ (v) = 0> v  (3.3)� vf 

If (3=3) is valid, it su!ces to sample the function at uniform time intervals �w 1@2vf (Eq. 3.1 is clearly � 

then satisfied.). 

Exercise. Let �w = 1= {  (w) is measured at all times, and found to vanish, except for w = p = 0> 1> 2> 3 

and the values are [1> 2> �1> �1] = Calculate the values of { (w) at intervals �w@10 from 5 w 5 and� � � 

plot it. Find the Fourier transform of { (w) = 

The consequence of the sampling theorem for discrete observations in time is that there is no purpose 

in calculating the Fourier transform for frequencies larger in magnitude than 1@(2�w)= Coupled with the 

result for time-limited functions, we conclude that all of the information about a finite sequence of Q 

observations at intervals �w and of duration, (Q � 1)�w is contained in the baseband |v| � 1@2�w> at 

frequencies vq = q@ (Q �w) = 

There is a theorem (owing to Paley and Wiener) that a time-limited function cannot be band-limited, 

and vice-versa. One infers that a truly time-limited function must have a Fourier transform with non-zero 

values extending to arbitrarily high frequencies, v= If such a function is sampled, then some degree of 

aliasing is inevitable. For a truly band-limited function, one makes the required interchange to show that 

it must actually extend with finite values to w = ±4= Some degree of aliasing of real signals is therefore 
inevitable. Nonetheless, such aliasing can usually be rendered arbitrarily small and harmless; the need 

to be vigilant is, however, clear. 

3.1. Tapering, Leakage, Etc. Suppose we have a continuous cosine { (w) =  cos  (2�s1w@W1) = Then 

the true Fourier transform is 
1 

{̂ (v) =  {� (v s1) +  � (v + s1)} = (3.4)
2 

� 

If it is observed (continuously) over the interval �W@2 � w � W@2> then we have the Fourier transform of 

{� (w) =  { (w) � (w@W ) (3.5) 

and which is found immediately to be ½ ¾ 
W sin (�W (v s1)) sin (�W (v + s1))

{̂� (v) =  (3.6)
� 

+ 
2 (�W (v s1)) (�W (v + s1))� 

The function 

sinc(Ts) = sin  (�W v) @ (�W v) > (3.7) 

plotted in Fig. (2), is ubiquitous in time series analysis and worth some study. Note that in (3.6) there is 

a “main-lobe” of width 2@W (defined by the zero crossings) and with amplitude maximum W . To  each  side  

of the main lobe, there is an infinite set of diminishing “sidelobes” of width 1@W between zero crossings. 

Let us suppose that s1 in (3.4) is chosen to be one of the special frequencies vq = q@W > W = Q �w> in 

particular, s1 = s@W= Then (3.6) is a sum of two sinc functions centered at vs = ±s@W= A very  important  

feature is that each of these functions vanishes identically at all other special frequencies vq> q  6= s= If 
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Figure 2. The function, sinc(vW ) =  sin (�vW ) @ (�vW ) > (solid line) which is the Fourier 

transform of a pure exponential centered at that corresponding frequency. Here W = 1= 

Notice that the function crosses zero whenever v = p> which corresponds to the Fourier 

frequency separation. The main lobe has width 2> while successor lobes have width 1, 

with  a decay rate only as fast as  1@ |v| = The function sinc2 (v@2) (dotted line) decays as 
2

1@ |v| , but its main lobe appears, by the scaling theorem, with twice the width of that 

of the sinc(v) function. 

we confine ourselves, as the inferences of the previous section imply, to computing the Fourier transform 

at only these special frequencies, we would see only a large value W at v = vs and zero at every other 

such frequency. (Note that if we convert to Fourier coe!cients by division by 1@W > we obtain the proper 

values.) The Fourier transform does not vanish for the continuum of frequencies v 6= vq, but it could be 

obtained from the sampling theorem. 

Now suppose that the cosine is no longer a Fourier harmonic of the record length. Then computation 

of the Fourier transform at vq no longer produces a zero value; rather one obtains a finite value from (3.6). 

In particular, if s1 lies halfway between two Fourier harmonics, q@W � s1 � (q + 1) @W , |ˆ { (vq+1)|{ (vq)| > |ˆ

will be approximately equal, and the absolute value of the remaining Fourier coe!cients will diminish 

roughly as 1@ |q � p| = The words “approximately” and “roughly” are employed because there is another 

sinc function at the corresponding negative frequencies, which generates finite values in the positive half 

of the v�axis. The analyst will not be able to distinguish the result (a single pure Fourier frequency in 

between vq> vq+1) from the possibility that there are two pure frequencies present at vq> vq+1. Thus  we  

have what is sometimes called “Rayleigh’s criterion”: that to separate, or “resolve” two pure sinusoids, 

at frequencies s1> s2> their frequencies must di�er by 

1 
> =  (3.8)|s1 � s2| � 
W 
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Figure 3. Interference pattern from a cosine, showing how contributions from positive 

and negative frequencies add and subtract. Each vanishes at the central frequency plus 

1@W and at all other intervals separated by 1@W= 

or precisely by a Fourier harmonic; see Fig. 3. (The terminology and criterion originate in spectroscopy 

where the main lobe of the sinc function is determined by the width, O> of a physical slit playing the role 

of W=) 

The appearance of the sinc function in the Fourier transform (and series) of a finite length record 

has some practical implications (note too, that the sampling theorem involves a sum over sinc functions). 

Suppose one has a very strong sinusoid of amplitude D> at frequency s> present in a record, { (w) whose 

Fourier transform otherwise has a magnitude which is much less than D= If  one is attempting to estimate  

{̂ (v) apart from the sinusoid, one sees that the influence of D (from both positive and negative frequency 

contributions) will be additive and can seriously corrupt {̂ (v) even at frequencies far from v = s= Such 

e�ects are known as “leakage”. There are basically three ways to remove this disturbance. (1) Subtract 

the sinusoid from the data prior to the Fourier analysis. This is a very common procedure when dealing, 

e.g., with tides in sealevel records, where the frequencies are known in advance to literally astronomical ¯ ¯ 
precision, and where|{̂ (vs)|

2 ¯D2¯ may be many orders of magnitude larger than its value at other � 

frequencies. (2) Choose a record length such that s = q@W ; that is, make the sinusoid into a Fourier 

harmonic and rely on the vanishing of the sinc function to suppress the contribution of D at all other 

frequencies. This procedure is an e�ective one, but is limited by the extent to which finite word length 

computers can compute the zeros of the sinc and by the common problem (e.g., again for tides) that 

several pure frequencies are present simultaneously and not all can be rendered simultaneously as Fourier 

harmonics. (3) Taper the record. Here one notes that the origin of the leakage problem is that the 

sinc diminishes only as 1@v as one moves away from the central frequency. This slow reduction is in turn 
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Figure 4. “Tophat”, or � (w) (solid) and “triangle” or � (w@2). A finite record can be

regarded as the product { (w)� (w@W ) > giving rise to the sinc pattern response. If this

finite record is tapered by multiplying it as { (w)� (w@ (2W )) , the Fourier transform decays

much more rapidly away from the central frequency of any sinusoids present.

easily shown to arise because the � function in (3.5) has finite steps in value (recall the Riemann-Lebesgue

Lemma.)

Suppose we “taper” {� (w) > by multiplying it by the triangle function (see Bracewell, 1978, and Fig.

4),

� (w) = 1� |w| > w � 1 (3.9)

= 0> |w| A 1 (3.10)

whose first derivative, rather than the function itself is discontinuous. The Fourier transform

�̂ (v) =
sin2 (�v)

(�v)
2 = sinc2 (v) (3.11)

is plotted in Fig. 2). As expected, it decays as 1@v2. Thus if we Fourier transform

{� (w) = { (w)� (w@ (W@2)) (3.12)

the pure cosine now gives rise to

{̂� (v) =
W

2

(
sin2 ((�@2)W (v� s1))
((�@2)W (v� s1))2

+
sin2 ((�@2)W (v+ s1))

((�@2)W (v+ s1))
2

)
(3.13)

and hence the leakage diminishes much more rapidly, whether or not we have succeeded in aligning

the dominant cosine. A price exists however, which must be paid. Notice that the main lobe of

F (� (w@ (W@2))) has width not 2@W> but 4@W , that is, it is twice as wide as before, and the resolu-

tion of the analysis would be 1/2 of what it was without tapering. Thus tapering the record prior to

Fourier analysis incurs a trade-o� between leakage and resolution.
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One might sensibly wonder if some intermediate function between the � and � functions exists so 

that one diminishes the leakage but without incurring a resolution penalty as large as a factor of 2. 

The answer is “yes”; much e�ort has been made over the years to finding tapers z (w), whose  Fourier  
ˆtransforms Z (v) have desirable properties. Such taper functions are called “windows”. A common one 

tapers the ends by multiplying by half-cosines at either end, cosines whose periods are a parameter of 

the analysis. Others go under the names of Hamming, Hanning, Bartlett, etc. windows. 

Later we will see that a sophisticated choice of windows leads to the elegant recent theory of multitaper 

spectral analysis. At the moment, we will only make the observation that the � taper and all other tapers, 

has the e�ect of throwing away data near the ends of the record, a process which is always best regarded 

as perverse: one should not have to discard good data for a good analysis procedure to work. 

Although we have discussed leakage etc. for continuously sampled records, completely analogous 

results exist for sampled, finite, records. We leave further discussion to the references. 

Exercise. Generate a pure cosine at frequency v1> and period W1 = 2�@v1 = Numerically compute its 

Fourier transform, and Fourier series coe!cients, when the record length, W =integer ×W1> and when it  

is no longer an integer multiple of the period. 




