MIT OpenCourseWare
http://ocw.mit.edu

12.S56 GPS: Where Are You?

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Data

AT	TO	Angles (deg)	Distance (m)	
A	B	359.9999	33.476	d2
	C	74.6273	32.221	d1
B	C	0.0001	39.838	d0
	A	51.2465	33.476	d2
C	A	0.0001	32.220	d1
	B	54.1232	39.838	d0

O	38.8351	20.656	Center
a	322.6759	10.032	
b	340.1612	21.625	
c	16.7340	38.323	
d	37.6851	41.375	
e	69.1422	35.558	
f	103.3052	17.551	

Solution:

Solution adjustment. The first step in the analysis is to make the angles consistent (i.e., sum to 180 degrees). These adjustments are usually made by distributing the "misclose" (the difference from 180 deg), into each angle inversely proportional to the line lengths. In our case the lengths are all about the same length so we add 0.001 deg to each angle. (This corresponds to mis-pointing by $\sim 0.5 \mathrm{~mm}$ over the $33-39$ meter distances). The distance measurements all agree in the forward and back directions except for one 1 mm difference. The first measurement was adopted.
(a) Using the geometry from the figure above at site 00 , we can write two equations for the radius:

$$
\begin{aligned}
& R \cos \alpha_{2}=d_{2} / 2 \\
& R \cos \alpha_{1}=d_{1} / 2 \quad \text { where } \alpha_{1}+\alpha_{2}=\alpha
\end{aligned}
$$

The division of these two equations results in the R being canceled and using the expansion of $\cos \left(\alpha-\alpha_{1}\right)=\cos \alpha \cos \alpha_{1}+\sin \alpha \sin \alpha_{1}$ we can write

$$
\frac{\cos \alpha \cos \alpha_{1}+\sin \alpha \sin \alpha_{1}}{\cos \alpha_{1}}=\frac{d_{2}}{d_{1}}
$$

By expansion, this equation reduces to:

$$
\tan \alpha_{1}=\left(\frac{d_{2}}{d_{1}}-\cos \alpha\right) / \sin \alpha
$$

Using the estimate of α_{1}, we can then solve for the radius R.
For each corner point the results are:

$$
\begin{aligned}
& \tan \alpha_{1}=\left(\frac{d_{2}}{d_{1}}-\cos \alpha\right) / \sin \alpha \Rightarrow \alpha_{1}=38.7499 \mathrm{deg} \Rightarrow R=20.658 \mathrm{~m} \\
& \tan \beta_{1}=\left(\frac{d_{0}}{d_{2}}-\cos \beta\right) / \sin \beta \Rightarrow \beta_{1}=35.8791 \mathrm{deg} \Rightarrow R=20.658 \mathrm{~m} \\
& \tan \gamma_{1}=\left(\frac{d_{1}}{d_{0}}-\cos \gamma\right) / \sin \gamma \Rightarrow \gamma_{1}=15.3724 \mathrm{deg} \Rightarrow R=20.658 \mathrm{~m}
\end{aligned}
$$

(b) To find the radius to each of the intermediate points, we use the data from site C . The cosine rule is used to solve for r and the sine rule to solve for ψ. To solve these equations we use:

$$
\begin{aligned}
& \tan \alpha_{1}^{\prime}=\left(\frac{d}{d_{1}}-\cos \alpha^{\prime}\right) / \sin \alpha^{\prime} \Rightarrow r=d^{\prime} /\left(2 \cos \alpha_{1}^{\prime}\right) \\
& \psi=2\left[90-\left(\alpha^{\prime}-\alpha_{1}^{\prime}\right)\right]
\end{aligned}
$$

(c) The position of the sprinkler at the center (CEN) and computed by geometry. If the spigot had been exactly at the center, the distance to it would have been 20.658 m (compared to the measured value of 20.656 m). The difference in position places the spigot 0.031 m from the center at $\psi=-93 \mathrm{deg}$.

The total results are shown in the figure below. ("South" is the direction from the center of the circle to point A, "East" at right angles to this direction.

The residuals to the mean radius and a function of the angle at the center are in the figure below:

This project was solved using Matlab code Proj_3_08.m. The output of the code (in addition to the figures above is:

12S56 Project Number 3
Sum of angles in triangle is 179.9971 deg, adding 0.0010 to each angle
-------12S56 2008--------------------------
Results for each angle/distance pair
Alpha 138.7499 Radius 120.658
Beta 135.8791 Radius 20.658
Gamma 1 15.3724 Radius 220.658
Mean radius 20.658

Point	Radius	Drad	Angle
B	20.658	0.000	71.7568

```
    a 20.612 -0.046 254.3308
    b 20.572 -0.085 219.0855
    c 20.680 0.022 146.6871
    d 20.692 0.034 104.8668
    e 20.631 -0.027 41.5311
    f 20.593 -0.064 332.9446
Sprinkler Postion 0.031 (m) at -93.32 deg
>>
```

