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Particle Filters 

Particle Filters
 

� Applied to Sequential filtering problems 
� Can also be applied to smoothing problems 
� Solution via Recursive Bayesian Estimation 
� Approximate Solution 
� Can work with non-Gaussian distributions/non-linear dynamics 
� Applicable to many other problems e.g. Spatial Inference 
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Particle Filters 

Notation 
xt , Xk : Models states in continuous and discrete space-time 
respectively. 
xT : True system state t 

yt ,Yk : Continous and Discrete measurements, respectively. 
X n : nth sample of discrete vector at step k .k 

M: model, P: probability mass function. 
Q: Proposal Distribution, δ : kronecker or dirac delta function. 

We follow Arulampalam et al.’s paper.
 
Non-Gaussianity
 

Sampling 

SIS Kernel 

SIR RPF 
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Particle Filters 

Sequential Filtering
 

Recall: Ensemble Kalman filter & Smoother 

Observations 

x0 x1 x2 
Model States 

y1 y2 

We are interested in studying the evolution of yt ∈ f (xT ), observed t 
system, using a model with state xt . 
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Particle Filters 

This means (in discrete time, discretized space): 

P(Xk |Y1:k ) 

step 

Can be solved recursively 

P(Xk , Y1:k )P(Xk |Y1:k ) = 
P(Y1:k ) 
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Particle Filters 

Sequential Filtering via Recursive Bayesian Estimation
 

Y1:k is a collection of variables Y1 . . . Yk 
So: 

P(Xk |Y1:k ) = 
P(Xk , Y1:k ) 

P(Y1:k ) 

= 
P(Yk |Xk )P(Xk |Yk )   

  P(Y1:k−1) 
P(Yk |Y1:k−1)   

  P(Y1:k−1) 

= 
P(Yk |Xk )P(Xk |Y1:k−1) 

P(Yk |Y1:k−1) 
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Particle Filters 

Contd.
 

P(Yk |Xk ) P(Xk |Xk−1)P(Xk−1|Y1:k−1) 
Xk−12 

1P(Xk |Y1:k ) = �� 
P(Yk |Xk )P(Xk |Xk−1)P(Xk−1|Yk−1) 

Xk Xk−1 

3 

1. From the Chapman-Kolmogorov equation 
2. The measurement model/observation equation 
3. Normalization Constant 

When can this recursive master equation be solved? 
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Particle Filters 

Let’s say 

Xk = Fk Xk−1 + Vk 

Zk = Hk Xk + ηk 

vk = N(·, Pk|k ) 

ηk = N(0, R) 

Linear Gaussian→ Kalman Filter 
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Particle Filters 

For non linear problems
 

Extended Kalman Filter, via linearization 
Ensemble Kalman filter 

•	 No linearization 
•	 Gaussian assumption 
•	 Ensemble members are “particles” that moved around in state 

space 
•	 They represent the moments of uncertainty 
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Particle Filters 

How may we relax the Gaussian assumption? 

If P(Xk |Xk−1) and P(Yk |Xk ) are non-gaussian; 

How do we represent them, let alone perform these integrations in (2) 
& (3)? 
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Particle Filters 

Particle Representation
 

Generically 
N 

P(X ) = wi δ(X − X i ) 
i=1 

pmf/pdf defined as a weighted sum 
→ Recall from Sampling lecture 
→ Response Surface Modeling lecture 
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Particle Filters 

Contd.
 

w1 

w2 

w10 

X 1X 2 X 10 

Even so,
 
Whilst P(X ) can be evaluated sampling from it may be difficult.
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Particle Filters 

Importance Sampling
 

Suppose we wish to evaluate 
f (x)P(x)dx (e.g. moment calculation) x 

P(x)
f (x) Q(x)dx , X i ∼ Q(x)

Q(x)x
 
N
1 P(x = X i )i i = f (x = X i )w , w = 

N Q(x = X i )
i=1 
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Particle Filters 

So: 
Sample from Q ≡Proposal distribution 
Evaluate from P ≡ the density 

P(X i )Apply importance weight = wi = Q(X i ) 

Now let’s consider 

P̂(x) PQ(x)
P(x) =  = Q ZpP(x)dx 

Q̂(x) QQ(x)
Q(x) =  = QQ(x)dx Zq 
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Particle Filters 

So: 
N1 Zq if (x = X i )wQ

N Zp i=1 

where QP(x = X i )iwQ =	 Q These are un-normalized “mere potentials” 
Q(x = X i ) 

It turns out: 

NZp i = ŵ
Zq i �N wi 

i=1 f (x = X i ) ˆ
∴ f (x)P(x)dx ∼ �N = 

ŵ j
j 
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Particle Filters 

is just a “weighted sum” 

Where a proposal distribution was used to get around sampling 
difficulties and the importance weights manage all the normalization. 

⇒It is important to select a good proposal distribution. Not one that 
focus on a small part of the state space and perhaps better than an 
uninformative prior. 
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Particle Filters 

Application of Importance Sampling to Bayesian Recursive Estimation 

Particle Filter 

ŵ i δ(X − X i )iP(X ) ∼ i δ(X − X i )= = w
j ŵ j 

i 

w i is normalized. 
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Particle Filters 

Let’s consider again: 

Xk = f (Xk−1) + Vk 

Yk = h(Xk ) + ηk 

A relationship between the observation and the state (measurement) 

⇒ Additive noise, but can be generalized 
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Particle Filters 

Let’s consider the joint distribution 

P(X0:k |Y1:K ) 

Y1 Yk 

X0 X1 Xk 

IC 

We may factor this distribution using particles 
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Particle Filters 

Chain Rule with Weights
 

N 

P(X0:k |Y1:k ) = wi δ(X0:k − X0
i 
:k ) 

i=1 

P(X0
i 
:k |Y1:k )wi ≡ 

Q(X0
i 
:k |Y1:k ) 

And let’s factor P(X0:k |Y1:k ) as 

P(Yk |X0:k , Y1:k−1)P(X0:k |Y1:k−1)P(X0:k |Y1:k ) = 
P(Yk |Y1:k−1) 

P(Yk |Xk )P(Xk |Xk−1)P(Xk−1|Y1:k−1) 
= 

P(Yk |Y1:k ) 
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Particle Filters 

Proposal Distribution Properties
 

Suppose we pick 

Q(X0:k |Y1:k ) = Q(Xk |X0:k−1, Y1:k )Q(X0:k−1|Y1:k−1) 

i.e. there is some kind of recursion on the proposal distribution. 
Further, if we approximate 

Q(Xk |X0:k−1, Y1:k ) = Q(Xk |Xk−1, Yk ) 

i.e. there is a Markov property. 
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Particle Filters 

Recursive Weight Updates 
Then we may have found an update equation for the weights. 

P(X0:k |Y1:k ) P(Yk |Xk )P(Xk |Xk−1)P(X0:k−1, Y1:k−1) 
= 

Q(X0:k |Y1:k ) P(Yk |Y1:k−1)Q(Xk |Xk−1, Yk )Q(X0:k−1|Y1:k−1) 

P(Yk |Xk
i )P(Xk

i |X i 

wi = k−1) 
k Q(Xk

i |Xk
i 
−1, Yk )P(Yk |Y1:k−1) 

P(Yk |Xk
i )P(Xk

i |X i 
k−1) = 

Q(Xk
i |Xk

i 
−1, Yk )P(Yk |Y1:k−1) 

P(Yk |Xk
i )P(Xk

i |X i 

∝ k−1) wi 
k−1Q(Xk

i |Xk
i 
−1, Yk ) 

P(X0
i 
:k−1, Y1:k−1) 

Q(X0
i 
:k−1, Y1:k−1) 

iwk−1 
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Particle Filters 

The Particle Filter 

In the filtering problem 
P(Xk |Y1:k ) 

i i P(Yk |Xk
i )P(Xk

i |Xk
i 
−1) wk ∝ wk−1 Q(Xk

i |Xk
i 
−1, Yk ) 

N 

(So) P(Xk |Y1:k ) ∼ wk δ(Xk − X i = i
k ) 

i=1 

Where the xk
i ∼ Q(Xk |Xk

i 
−1, Yk )
 

The method essentially draws particles from a proposal distribution
 
and recursively update its weights.
 
⇒ No gaussian assumption 
⇒ Neat 
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Particle Filters 

Algorithm Sequential Importance Sampling
 

Input: {Xk
i 
−1, wk

i 
−1}, Yk i = 1 . . . N 

for: i = 1 . . . N 
Draw: Xk

i ∼ Q(Xk |Xk
i 
−1, Yk ) 

P(Yk |Xk
i )P(Xk

i |X i 
i i k−1)wk ∝ wk−1 Q(Xk

i |Xk
i 
−1,Yk ) 

end 

Quantifying Uncertainty 

24



�

Particle Filters 

BUT The Problem
 

Q 
Xk−1 

Xk 

In a few intervals one particle will have a non negligible weight; all but 
one will have negligible weights! 

1QNeff = N 
=1(wk

i )2 
i
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Particle Filters 

Contd.
 

QNeff ≡ Effective Sample size 
When NQeff << N → Degenaracy sets in 

Resampling is a way to address this problem 
Main idea 

weights 

Resample 

You can sample uniformly 
and set weights to obtain a 
representation. You can 
sample pdf to get particles 
and reset their weights. 

weights are reset 
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Particle Filters 

Resampling algorithm
 

Cdf(w)w4 
w5 

w3 
w6
 

w2
 
w7 

w1 

X 1X 2X 3X 4X 5X 6X 7 

w1 w7 w2 w6 w3 w5 w4 

Sample 
Resampling more probable 

states more 

Many points 

Uniform weights 
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Particle Filters 

Algorithm
 

iInput {Xk
i , wk }

1. Construct cdf 
for i = 2 : N Ci ← Ci−1 + wk

i (sorted) 
2. Seed u1 ∼ U[0, N−1] 

3. for j = 1 : N 
1uj = u1 + N (j − 1)
 

i ← find(Ci ≥ uj )
 
X̂ j j 1
 = X i w = k k k N
 
Set Parent of i j → i
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Particle Filters 

Contd. 

So the resampling method can avoid degeneracy because it
 
produces more samples for higher probability points
 

But	 Sample impoverishment may result; Too many samples 
too close → impoverishment or loss of diversity 

⇒ MCMC may be a way out 
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Particle Filters 

Generic Particle filter
 

Input: {Xk
i 
−1, wk

i 
−1}, Yk 

for	 i = 1 : N
 
X i
 

k ∼ Q(Xk |Xk
i 
−1, Yk ) 

P(Yk |Xk
i )P(Xk

i |X i 

wk
i ← wi k−1) 

k−1 Q(Xk
i |Xk

i 
−1,Yk ) 

end 

η = i w
i 
k 

wk
i ← wk

i /η 
1QNeff = N 

=1(wk
i )2 

i

If NQeff < NT
 
{Xk , wk

i } ← Resample {Xk
i , wk

i }
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Particle Filters 

What is the optimal Q function? 
Nwe try to minimize i=1(wk 

∗i )2 

Then: 

Q∗ (Xk |Xk
i 
−1, Yk ) = P(Xk |Xk

i 
−1, Yk ) 

P(Yk |Xk , Xk
i 
−1)P(Xk |X i 

k−1) = 
P(Yk |Xk

i 
−1) 

P(Yk |Xk
i )P(Xk

i |Xk
i 
−1) wk ∝ w P(Yk |X ii 

k
i 
−1 k−1)P(Yk |Xk

i )P(Xk |Xk
i 
−1) 

i∝ w P(Yk |Xk )P(Xk |Xk
i 
−1)dXkk−1 

Xk 

Not easy to do! 
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Particle Filters 

Asymptotically:
 
QQ ∼ P(Xk |Xk

i 
−1) ← Common choice Q ≡ P(Xk |X i
 

k−1) 

Sometimes feasible to use proposal from process noise 

Then 

wK
i ∝ wk

i 
−1P(Yk |X i 

k ) 

If resampling is done at every step: 

iwk ∝ p(Yk |Xk
i ) 

(wk
i 
−1 ∝ N 

1 ) 
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Particle Filters 

SIR -Sampling Importance Resampling 
Input {Xk

i 
−1, wk

i 
−1}, Yk 

for i = 1 : N 
X i 

k ∼ P(Xk |X i 
k−1) 

w = P(Yk |X i 
k
i 

k ) 

end 

η = i w
i 
k 

w i = wk
i /ηk 

i i i{xk , wk } ← Resample [{Xk
i , wk }] 
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Particle Filters 

Example
 

Xk−1 25Xk−1Xk = + + 8 cos(1.2k) + vk−12 1 + Xk
2 
−1 

X 2 
Yk = k + ηk w 

ηk ∼ N(0, R) 

vk−1 ∼ N(0, Qk−1) 
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