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Ensemble Filter and Smoother

Uncertainty Propagates in Time-Depdendent
Processes
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M = M(x,; an)

Xni1 = M(Kn; an) +wp

M: -Physical or Statistical Model
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Ensemble Filter and Smoother

Uncertainty Propagates in Bayesian Networks

®—©

Found in Hierarchical Bayes, Graphical Models.
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Uncertainty Propagates in Spatial Processes
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Inference Problems

1. Two-point boundary value problems, incl. uncertainty estimation
propagation. Fixed Point Smoother.

2. Recursive Bayesian Estimation for Sequential Filtering and
Smoothing.

3. Nonlinearity and Dimensionality and Uncertainty: Ensemble
Filter & Smoother.
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Inference Problems

1. Two-point boundary value problems, incl. uncertainty estimation
propagation. Fixed Point Smoother.

2. Recursive Bayesian Estimation for Sequential Filtering and
Smoothing.

3. Nonlinearity and Dimensionality and Uncertainty: Ensemble
Filter & Smoother.

Propagating Uncertainty, a first step.
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Variational Inference

1 -
J(x0) := 5 (%o — xb)" Coo' (X0 — Xp)+
m

> {30~ H) Ry, ~ ) + ATl - Moxri)l}

i=1

Cannot deal with stochastic model (i.e. model error). Needs a
Bayesian formalism.
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Filters and Smoothers

Sequential Filtering:

PXnly,---y,) o Py |x))  PXnlXp 1)P(Xp_tly,---y, ,)(1)

Xn—1

= P(Z,,Bn)P( n|y1 Y. 1) (2)
= P(Zn|ln)P(fn) 3)

The recursive form is simple when a perfect model is assumed, but

the Kolmogorov-Chapman equation has to be used in the presence of
model error. P(x,|y, ...y, ,)is the forecast distribution or prior

distribution also seen as P(x/)
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Write the Objective

Sequential Filtering:

1 _
Jxp) = 50— X0) P (X — x0) +
1
5, = Hx)) T R™ !y, — Hx,) (4)

We have assumed a linear observation operator y = Hx, + n, with
n ~ N(0, R).

Quantifying Uncertainty



Ensemble Filter and Smoother

Find the Stationary Point

Sequential Filtering:

X, = xh+PHT(HPHT +R)"(y, — Hx}) (5)
= x7 (6)

P, = (H'R7'H+P )™ (7)
(8)

P; — PtHT(HP;HT + R)~'HP;

Then, launch a new prediction g’,‘m = M(x,) and the new uncertainty
(predicted) is Py = LP,LT, where L = STM when the model is
nonlinear. Propagating produces the moments of P(x,. 1|y, ...y ).
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Smoother

We are interested in the state estimates at all points in an interval,
that is:

P(xy...Xply,---¥,) (9)
The joint distribution can account for model errors, state and
parameter errors within its framework.
We break it down via Bayes Rule, Conditional Independence and
Markov assumption, and marginalization and perfect

modelassumption, leading to a coupled set of equations that are
recursively solved.
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Uncertainty Propagation is Expensive

Forward(you’ll need this in the end)

Backward via information form:

Tom = HTR™'H

. OMT oM _

li = ox li+1i+167Xi+HTR 'H
A . OMT. oM
Coo = | Coo +8Tol”87m

12
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Ensemble Filter and Smoother

The Dimensionality and Nonlinearity Challenges
Monte-Carlo

» Reduced-rank approximation

» Particle Filter
Domain Decomposition
» Localization, Localized Filters

» Scale-recursive Spatial Inference

Model Reduction & Interpolation
» Snapshots & POD

» Krylov Subspace
Response Surface Models

» Deterministic Equivalent Modeling Method

» Stochastic Response Surface Methodology
Polynomial Chaos Expansions 13
» Generalized Polynomial Chaos
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Ensemble Filter and Smoother

Monte-Carlo

Q@

7
J’
Isotropic Leadng
ot _ Lyapunov —— time
Initial Perturbation vectors
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Ensemble Filter and Smoother

Filter-Updating

Al =[xi.. . x[]= Allattime T
Al =[x} .. %)
NOTE THAT

1 e
P’ = SﬁAfAfT < Uncertainty

So, propagate uncertainty through Samples “Integrated” forward.
Model is not linearized.
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Ensemble Filter and Smoother

No Linearization

y="h(x)+n n~N(O,R)
Z=[y+mn,,....y +n < Perturbed Observations
R~ 1 z.z2T
s—1
Also, let

Q' defined similarly
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Uncorrelated Noise

Note
Q +2) QT +2") = (QIQT + z2ZT)
When observation noise is uncorrelated with state = an assumption

Let
x? be the estimate, analysis, ‘posterior’ rv.
A? and A? similarly, defined.
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Easy Formulation

A= A BT 4 227] - [z«

Identical to KF/EKF in linear/linearized case
= No linearization of the model
= No explicit uncertainty (covariance) propagation

[QfoT+22T}71 _ ([Qf+2][QfT+ZT])71
= (cch)™
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Solution

Let
cC=[U s V]
[cCT]™' =us2uT
= (UsTws’

—VDVD'
=D
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Fast Calculation

AR = AT+ AQTIUS2UT)[Z - Q]
,9) (m,9) (m ) M0, S)(s, S)(s, M), 5) (1, s)
Return by right to left, multiply; FAST, low-dimensional
A=A+ A' X
=A'(Is + X3)
=A"Xs

A “weakly” nonlinear transformation (Xs = Xs(A"))

20
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Ensemble Filter and Smoother

Time Dependent Example

Lorentz
X = —=Xji—2Xi—1 + Xi—1Xit1 — Xi + U
= Xi_1[Xix1 — Xi_2]— Xx; + u
i 1[ i+1 i 2] i :
Advective Dissipative ~ Forcing
) \
< \ Chaotic
Filter
21
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Need to Get multimedia WORKING

Play ENKFLP.wmv!
Chalk Talk: Method 2.
Demo: Matlab.
Demo: PI Bottle.

22
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Ensemble Filter and Smoother

Plug and Play

So,

A2 = All; + No measurement
2 — Al X5, « Filter, same as Xs
A; = Ails < No future measurement
AS = A5+ QT [U 82U 1120 — Q1]
= A3X5;

Note: X5 here is same as X;s in earlier slide.
23
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Ensemble Filter and Smoother

Send me a message

On the graph

X51

Message sent from x; to xo(X51)
Xo smoothed by y i.e Aj ~ Pr(xoly,)

24
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Ensemble Filter and Smoother

Fixed Interval & Fixed Lag

Fixed Interval
Y1 Yn71 Yn

P(Xoly,---y,)
P(x1ly, - Yn) \ Smoother

P(X,ly,---y,) < Filter

25
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Ensemble Filter and Smoother

Fixed Interval & Fixed Lag

Fixed Lag

___________

___________

___________

P(Xoly,---y,) = P(Xoly,---y,), (L<n)
P(KI|Y0~--X,-+L)

Smothed up to a “window” 2
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Ensemble Filter and Smoother

Fixed Interval: The Dumb Way

Graphical Model of Interval Smoothing

(V1)
Observations T Yy T en
Filtering A g;
X594
Integration ,— — - &_6 0> 0 024 .
) ' A3y

27
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Backward Recursion

Key Assumption: Jointly Gaussian Distributions.
N
k=A 11 x5
j=k+1

N
Ck = H X5; = X5k41Ck 1
j—k+1

28
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Fixed Interval: The New Normal

(FBF)

29
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Fixed Interval on Lorenz

04
0.35
03
0.25

Error

0.2
0.15

0.1

V1&FBF

0.05

0 L A A L ( L L L 1

0 10 20 30 40 50 60 70 80 90 100

Integration Time
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Costs of Inference, Toy Problem

4 Comparison between V1 and FBF
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Fixed Lag

Fixed Lag Smoother

V1-lag & FIFO-lag

04 0.4
2 Lag =1 Lag=9
w
02 S UY g2 N—
0 0
0 50 100 0 50 100
5 0.4 0.4
= Lag =5 Lag = 13
02 w———— 02— —
0 0
0 50 100 0 50 100
Time Time
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Fixed Lag: The Dumb Way

30 | 4
z
o 25} 4
E
=
s 20 B
k<]
8 L _
2 15
g
(&) 10 t 4

FBF 1 2 3 4 5 6 7 8 9 10 11 12 13
Vi-lag--->
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Fixed Lag is FIFO

k+w
i=At 11 x5
j=k-+1
— AZCy
Ck = )(5,?1 Ck_1X5k1w

34
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Fixed Lag: The New Normal
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© FBF 1 2 34 5 6 7 8 9 10 11 12 13

FIFO-Lag
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We need to fix the multimedia!

Watch FLKSO.wmv!

Reading: Ravela and McLaughlin, Fast Ensemble Smoothing, Ocean
Dynamics, 2007

Schneider 2001: Analysis of incomplete climate data: Estimation of
mean values and covariance matrices and imputation of missing
values, Journal of Climate

36
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Ensemble Filter and Smoother

Where does ensemble come from?

singular vectors

&

P} P

I

Low dimensional
Subspace
Span {u©® ... uM}
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Things get tough... the Tough linearize

Thus
X1 = M(x,)
= M(X, + Xo)
_ oM -
M(X,) + X yex Xo
X1 = £)~(0

38
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Eigenvalue Problem

Now.let C; be a metric on vector u; and let Cy be a metric on u,

< Ug, Colg > < Ug, Colg >

Maximize ratio for the k% perturbation: Ax:
= ,C# C1 Eggk) = )kaogék)

Which is a generalized eigenvalue problem. Note that when C; = |,
and Cp = P} then gﬁk) are leading directions of P!

39
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SV aproach

Notes
» Adjoint & TLM not easy to calculate but robust.

» L may be really large too! How can we reduce L£?

» Sensitivity to norm.

40
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Ensemble Filter and Smoother

Breeding

S

Align with leading
directions of error growth
(Lyapunov vectors)

Initial
Perturbation

Qi1 R; = L @
i+1 741 i
Q R decomposition LM
Q()EI Q()*)Qi"' Qk
~—~

forgetsQq
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It's easy to breed

1. Generate “random” initial perturbation
2. Let it grow; renormalize. (i.e propagate it)
3. Repeat

= Breeding vectors
How many bred vectors ?
= Size of L?

42
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Ways to simplify Models for Uncertainty Propagation

1. Spectral Truncation: Find a few leading directions of Covariance
or Model and propagate them. Breed Vectors. Calculate a
reduced local linear model from ensemble.

2. Localization: Localize filtering and smoothing, use
scale-recursive decomposition.

3. Model Reduction: Reduce order of linearized model, construct a
reduced model from snapshots.

4. Sample Input-Output pairs to create a simple auxiliary model.

43
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Model Reduction

Model Reduction

Structure
SVD Krylov
Nonlinear Linear
POD Balanced Truncation  Lanczos
Empirical Grammian Hankel approx. Arnoldi etc.
SVD Krylov

44
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Ensemble Filter and Smoother

Model Bypass — Non-Intrusive Approaches

()
01000_01

Response Surface
Modeling, Polyno-
mial Chaos.

45
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Ensemble Filter and Smoother

Extra-Special on Covariance Representations

If we have a large covariance matrix C nonetheless representable by
computer and if we know it is a block-circulant matrix, then the
Fourier Transform can be used to diagonalize it:

D= ucu’ (10)

For the unitary transform U, and D is diagonal. So, subsequent
processing with covariance is simplified, provided the model and
state can be also expressed in fourier domain.

oM

UbXppq = U—UT Ux,, (11)
§fn+1 = E;:(an (12)
ox] Clox, = o¢TD,o¢ (13)

Spectral truncation to a few wave numbers in U also leads to a
reduced order model. Incidentally, similar process for wavelet
decomposition. 46

DO MATLAB EXAMPLE
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lterative calculation

If a covariance C has eigen vectors U and eigenvalues , i.e.
CU = UA, then we may recursively calucate the leading modes in U

because: N
C= ZQ;()\ka; (14)
k=1
Where U = [u; ... uy] and A = diag(Miy, - . ., Ann), in decreasing
order. Let Cy; = C, and iteratively calculate:
fork = 1...N (15)
{Ug, M} = LeadingEig(Cu) (16)
Ciitkit = Cue — UhiklUy (17)
(18)

We need a procedure to calculate the leading Eigenvector and

Eigenvalue. a7
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Ensemble Filter and Smoother

Basic approach: Power lteration
WARNING: There are many advanced methods for calculating eigen
vectors and eigen values iteratively and one should use them (e.g.
from ARPACK). Here, we provide an intuition for the process.
To calculate the leading vector of C, let us consider a vector in the
basis z, which we may expand as:

N
z= Crly (19)
k=1

Now, we can write for the n power of C:

N
C'z = Y aC'y (20)
k=1
N
= ZCKAZka (21)
k=1
HOW? 48
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Power lteration Continued

Z Ck A\fy
CnZ = C1>\11 U1 + k )\n 7/( (22)
11

Defining z, = C"z, we note that

n%oo:sH ||%u1 (23)
n

Algorithm Powerlteration(C):

Initialize z; z + ||2||

lterate: t «+ Cz, z + L

Tien

49
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LeadingEig(C)

u = Powerlteration(C) (24)

A = u'Cu (25)

return(u, \) end (26)
50
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But the Covariance is too LARGE!

» The preceding discussion is all fine, but often the dimensionality
is such that we have a really large covariance that cannot be
represented. Fortunately, many physical problems have only a
few modes of interest which we represent through data, e.g. an
ensemble.

» So we begin with a skinny matrix X, and assume the covariance
is C = XX'. We would like a representation without explicitly
calculating C and exploiting the rank-deficiency due to a skinny
X.

51
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Alternate form

» Let X = USVT be the singular value decomposition and here
Si > Sii1i41. Then C = UNUT where A = S?

» We will calculate only a few top left and right singular vectors and
singular values iteratively for a reduced order representation
Ca = UaNgU].

» Note that because X is skinny, i.e. it is of size n x N with
N << n. We may further only pick d modes, d < N.

» We would like a representation of Cy without explicitly calculating
it.

» Notice that D = X7 X is a small matrix when X is skinny.

52
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Alternate form

» Let X = USVT be the singular value decomposition and here
Sii > Sitqis1- Then D= XTX = VAVT where A = S?, a small

matrix.

» We calculate the eigen vectors and eigen values of D recursively.
Let Dy = D;andfork=1...d

v, = Powerlteration(Dy) (27)
M = VEDyvy (28)
Dis1 = Dk — ViduVi (29)

Noting that Sy = /A4, We obtain U, as a skinny nxd matrix:
Ug = XV4S," (30)

Store Uy and Ay and use them to calculate the norm in an
application. DEMO IN MATLAB
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Ensemble Filter and Smoother

Applicable to Processes

g(x, t) = FO(x,t) — System
06 .
R(9) = T F6 — Residual

6 = un(t) — KLT (POD or Krylov)
u” R = 0 — Galerkin Projection

% = u” Fun — ROM

54
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