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Typical Problems

v

What happened in past, "climate", "economy",

"terrorism","evolution”

What is the future of "weather," "climate", "economy"...
How good are my models?

What is a good model?

v

v

v

These are fundamental challenges of all time, but climate related
issues are front and center now.
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Objectives

» Predictions demand a quantification of uncertainty
» Estimates demand a quantification of Uncertainty
» Inference demands a quantification of Uncertainty
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Quantifying Uncertainty

» Uncertainty can be Aleatory: a random outcome.

» Uncertainty can be Epistemic: an unknown quantity to be
estimated or imputed.
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Systems Perspective

» Uncertainty in Model Predictions: State Estimation
» Uncertainty in Model Parameters: Parameter Estimation
» Uncertainty in Model Structure: Model Selection

These are most easily seen in time-dependent processes, though it is
just as valid for statistical predictive and emperical modeling.
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It might take both

This is a dilemma for modeling many physical processes:

1. Physics-based models applicable to the full-range of dynamics,
but difficult to implement and often with too-many degrees of
freedom for the problem of interest.

2. Empirical ones can’t generalize, limited predictability.

Often, it takes both skills to build a good model but the two don’t
speak the same language or communicate well.

As Walker says:

There is, today, always a risk that specialists in two subjects, using
languages full of words that are unintelligible without study, will grow
up not only without knowledge of each other’s work, but also will
ignore the problems which require mutual assistance.
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Main Areas

Linear Models and Gaussian Inference
Two-point Boundary Value Problems
Filters and Smoothers

Ensemble Methods

» Sampling and Markov Chain Monte-Carlo
» Hierarchical Bayes

vV v v v

This was a lot of material (but there is more to cover).
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Central Limit, a good start?

» The sampling distribution of the statistic can be estimated by
repeatedly drawing n-length sample sequences from a
distribution, calculating the statistic and then considering the
resulting distribution.

» If the original distribution had a mean m and variance s, then in
large n, the sampling distribution:

» Converges to a Gaussian.

» The sample mean converges ms — m and has variance v = 2

» The sample variance converges as (n — 1)v = x?(n—1).
» Small sample problem!
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How to Solve?

Least Squares:
J(a) = ||x — Hal|

Understand the notation and terms.

dJ/da = 0 (1)
= H'x=H"Ha )
= a=(H"H) "H'x (3)

Least Squares Estimate using the Pseudo inverse. Stationary Point.
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AR model identification

Tine Response Comparison
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Bayesian Estimate

P(alx) o< P(x|a)P(a) (4)

Maximum a posteriori (Bayes) estimate, when n ~ N(0, Cxx) and
a ~ N(&a, C,.), of mean and covariance:

& =a+ CaaH(HCaoHT + Cx) ' (x — Ha)
Coo = (HTCH+ C1)™
= Coa — Cao HT(HC,oH + C) "HC,q
Chalk talk: HOW IS THIS DERIVED?
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Spring Mass System

X=AX+F (5)

Naturs Response withiCxD Forced Riesponse imeseries v odeds

amplinide
S
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Discretization

We can solve _
X=AX+F (6)

using numerical methods, e.g. Runge-Kutta methods (In matlab,
ode45). Let’'s do demo.

But to understand, let’s take an Euler discretization with zero-order
hold of forcing. Then

Ay = eMPl=r"" [(sl— A)_1]t:At (
Fs = A '(Aq— DB (
Xtynt = AgXi+ Fg (

L
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We Just Say

Xnp1 = M(Xn; @) (10)
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Time Dependent Example

Xnp1 = M(Xn;g)
Zn = HX” + Q
We have assumed the parameter vector is known constant, the model
is deterministic, the observations are linearly related, but additively
noisy and time-independent with » = N(0, R). We are given a series

of measurements Yo Y and we are asked to estimate the initial
condition x,. We may S|mply produce a least-squares function:

J(Xo) == (Xo — Kb)TC&; (Xo — Xp) + Z(Mi — Hx;)T R~ (y; — Hx;)
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“Forward Backward”

Forward(from )\)

Backward(from x)

A =H'R 'y — Hx,)

oMT _
A = A+ HTRT(y, = Hx))
X oM™
Xo = Xp+ COOTXOA1
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Uncertainty?
Via Linearization

Forward(you’ll need this in the end)

oM om7 .
C’i_8,0’1’18 0</§m

What about backward? Convenient via information form:

Tom =HTR'H
N oM™ oM
li = W/’“’“a +H'R'H
oM. oM™’
Coo = COO + — 2% I14 8x0

Here £ = |s the Jacobian of M and £7 is its adjoint.
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Example: Double Pendulum

With a measurement every second with uncertainty same as Cyg
0.0130 -0.0033 0.0127 -0.0009
-0.0033 0.1259 -0.0004 -0.0148
0.0127 -0.0004 0.0268 -0.0061
-0.0009 -0.0148 -0.0061 0.2176

Coo = 1.0e-03 *
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The Missing Data Estimate and Uncertainty

Estimate:
M CyxCry (11)
7 = CuCy'x (12)
(13)

Uncertainty follows from objective:

Jx) = (yi—Mx)"C,l(yi — Mx)
+(X — %) Cyl (xi — %) (14)
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Fisher Information

Uncertainty Estimate:

d?J/dx? = MTC,'M+ Cyi (15)
Cy = (Cu'CyC),'CuCy' +Cy)! (16)
17)

Uncertainty follows from objective:

Jx;) = (yi—Mx)C, (yi — Mx)
+(x — %) CRl (xi — %) (18)
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Towards a Nonlinear World.

P; é1 + Pséz cos(fz — 61) — Pgég sin(62 — 61) +
Psgsinfy =0

Pgéz + P3§1 008(02 — 64 ) + P3912 Sin(92 — 04 ) +
Psgsinf, =0

Let,
Py = (m1 + mg)l_$ Py = (m1 + ITIQ)L1
P, = myl3 Ps = mpLo
Ps = maLiLp
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Uncertainty Propagates in Time-Depdendent
Processes

VA VNG VNS VAN
SN e— DN e— /D —/T\

DG —()—()

M = M(x,; an)

Xni1 = M(Kn; an) +wp

M: -Physical or Statistical Model
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Filters and Smoothers

Sequential Filtering:

P(Xaly,---y.) o Py X)) P(XalXn 1) P(Xp1ly, -y, _019)

Xn—1

= Py [x)P(Xaly,-- ¥, ) (20)
= P(y,|1x,)P(x}) (21)

The recursive form is simple when a perfect model is assumed, but

the Kolmogorov-Chapman equation has to be used in the presence of
model error. P(x,|y, ...y, ,)is the forecast distribution or prior

distribution also seen as P(x/)
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Write the Objective

Sequential Filtering:

1
2
1

5, = Hx)) T R™ !y, — Hx,) (22)

f

J(xp) = S(Xo—xh) P (x,— X0) +

We have assumed a linear observation operator y = Hx, + n, with
n ~ N(0, R).
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Find the Stationary Point

Sequential Filtering:

X, = Xxh+PHT(HPHT + R)"'(y — Hx}) (23)
= x7 (24)

P, = (H'R7'H+P )™ (25)
(26)

= Py~ PHT(HP:HT + R)~"HP;

Then, launch a new prediction g’,‘m = M(x,) and the new uncertainty
(predicted) is Py = LP,LT, where L = STM when the model is

nonlinear. Propagating produces the moments of P(Xpaly,---y,)
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Smoother

We are interested in the state estimates at all points in an interval,
that is:

P(xy...Xply,---¥,) (27)

The joint distribution can account for model errors, state and
parameter errors within its framework.

We break it down via Bayes Rule, Conditional Independence and
Markov assumption, and marginalization and perfect
modelassumption, leading to a coupled set of equations that are
recursively solved.
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Fast Calculation

AR = AT+ AQTIUS2UT)[Z - Q]
,9) (m,9) (m ) M0, S)(s, S)(s, M), 5) (1, s)
Return by right to left, multiply; FAST, low-dimensional
A=A+ A' X
=A'(Is + X3)
=A"Xs

A “weakly” nonlinear transformation (Xs = Xs(A"))
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Plug and Play
So,
&
Xo X4

A2 = All; + No measurement
2 — Al X5, « Filter, same as Xs
A; = Ails < No future measurement
AS = A5+ QT [U 82U 1120 — Q1]
= A3X5;

Note: X5 here is same as X;s in earlier slide.
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Fixed Interval & Fixed Lag

Fixed Interval
Y1 Yn71 Yn

R S

Xo Xq X2 X3 Xp—1 Xn

P(xoly,---¥,)
P(x1ly, - Yn) \ Smoother

P(X,ly,---y,) < Filter
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Fixed Interval & Fixed Lag

Fixed Lag

___________

___________

___________

P(Xoly,---y,) = P(Xoly,---y,), (L<n)
P(KI|Y0~--X,-+L)

Smothed up to a “window”
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Backward Recursion: Fast Ensemble Smoothing

Key Assumption: Jointly Gaussian Distributions.

N
k=A 11 x5
j=k+1

N
Ck = H X5; = X5k41Ck 1
j—k+1
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Fixed Lag is FIFO

k+w
A=A T X5
j=k-+1
= A2C,
Ck = )(5,?1 Ck_1X5k1w
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Fixed Interval on Lorenz
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Costs of Inference, Toy Problem

4 Comparison between V1 and FBF

10

-
o

-} E E b) Cf, Filtering only

ol W T R R

wompuiauonal ume(s)

10 g Vo T PPPRTO Y =T+ =F 3
=== =1
T T
d) AC_,,_, FBF smoothing

=== =x===x==3
==F=F=F=FFFH
RN SR (PR R S By
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Fixed Lag

Fixed Lag Smoother

V1-lag & FIFO-lag

. 04 0.4
2 Lag = 1 Lag=9
w
02 S UY g2 N—
0 0
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= Lag =5 Lag = 13
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Ways to simplify Models for Uncertainty Propagation

1. Spectral Truncation: Find a few leading directions of Covariance
or Model and propagate them. Breed Vectors. Calculate a
reduced local linear model from ensemble.

2. Localization: Localize filtering and smoothing, use
scale-recursive decomposition.

3. Model Reduction: Reduce order of linearized model, construct a
reduced model from snapshots.

4. Sample Input-Output pairs to create a simple auxiliary model.
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SV Ensemble

Now.let C; be a metric on vector u; and let Cy be a metric on u,

<g0300g0 > <g0,00g0 >

Maximize ratio for the k% perturbation: Ax:
= ,C# C1 Eggk) = )kaogék)

Which is a generalized eigenvalue problem. Note that when C; = |,
and Cp = P} then gﬁk) are leading directions of P!
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Breeding

S

Align with leading
directions of error growth
(Lyapunov vectors)

Initial
Perturbation

Qi1 R; = L @
i+1 741 i
Q R decomposition LM
Q()E/ QQHQ,‘”' Qk
~—~

forgetsQq
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Alternate form

» Let X = USVT be the singular value decomposition and here
Sii > Sitqis1- Then D= XTX = VAVT where A = S?, a small

matrix.

» We calculate the eigen vectors and eigen values of D recursively.
Let Dy = D;andfork=1...d

v, = Powerlteration(Dx) (28)
M = VEDyvy (29)
Dii1 = Di— vidvi (30)

Noting that Sy = /A4, We obtain U, as a skinny nxd matrix:
Ug = XV4S," (31)

Store Uy and Ay and use them to calculate the norm in an
application. DEMO IN MATLAB
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Markov Chain Monte Carlo

» Monte Carlo sampling made for large scale problems via Markov
Chains

» Monte Carlo Sampling
» Rejection Sampling
» Importance Sampling
» Metropolis Hastings

> Gibbs
» Useful for MAP and MLE problems
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Rejection Sampling
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Importance Sampling

/ F(X)P(x)dx — / F(x) ZE’S Q(x)dx
o TN gy POS)
~ 3 Sz:; f(xs) A’ Xs ~ Q(x)
P(xs) _ N
Q) = Importance of sample = ws

S
A
ls = 3 ; f(Xs)ws
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Markov Chain Monte Carlo

1. A proposal distribution from local moves (not globally, as in
RS/IS).

1.1 Local moves could be in some subspace of state space.
2. Move is conditioned on most recent sample

Quantifying Uncertainty 43



Metropolis Hastings

Draw x’ ~ Q(x’; x), the proposal distribution

P(x")Q(x; x’))

a=min (1, 7P(X)Q(X’;X)

Accept x” with prob. a, else retain x.

= No need to have pmfin Q(x’; x)
= Satisfies detailed balance
= Equilibrium distribution is target distribution

Note: Pr(x — x’) = aQ(x’; x)
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Gibbs Sampler: a different transition
m’

Dy

Letx =Xy, -, Xp
(a huge dimensional space) and we want to sample

P(x) =P(x; - Xn)
P(x) = P(x1)P(x2|x1)P(X3|X2, X1) . . . P(Xp|Xpn—1...X1)

Gibbs:

P(X1) — P(X2|X1) — P(X3|X1,X2) — e
— P(Xn|Xn -1 ...X1) — P(X1|X,‘751) — P(X2|X,‘752) -
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Slice Sampler

Gap is Ok /

(x.y) |

P(y|x) = ul0,P(x)] vy ~ P(y|x)
x ~ U[xmin, xmax]
1 PX)=>y

Pixly) o Lixiy) = { 0 otherwise

Accept if L(x;y) =1, reject otherwise
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Graphically

Summary IIT(D)

N
P(5.al{y,}) o< [] Py,18) P(Bila)P(a)
i=1

| repeated N times
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S0
Example

yi ~ Poisson(\))

log(Ai) = Bo + S1CT1 + B2NAOI
+ B3CTI x NAOI

B~ N(px™)
Also read "Regression Machines" for Generalized Linear Models
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Constructing priors

A. Conjugate Priors: The Gamma Distribution is a conjugate prior of
the Poisson Distribution; so that is one route.

B. Non-informative Prior (flat)

C. Bootstrap-Prior: Use a portion of the data to estimate
parameters by MLE.

Other parameter estimates

Frequentist=- MLE
(e.g. GLM)
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Generalizing

& ©®
©
©
®

G

Summary IIT(D)

T

parent
child

|

a Hierarchical relationship between
variables

b All are random

¢ Represented by directed acyclic
graphs
= Bayesian Networks
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example

Summary IIT(D)

Visit To Asia

Visit 1.00
No Visit 99.0

v

Smoking

Smoker 50.0
NonSmoker 50.0

e

N

Tuberculosis

Lung Cancer

Bronchitis

Present 1.04

Normal 89.0

e

Present 43.6
Absent 56.4

Quantifying Uncertainty

Present 5.50 Present 45.0
Absent 99.0 Absent 94.5 Absent 55.0
Tuberculosis or Cancer
True 6.48
False 93.5
XRay Result Dyspnea
Abnormal 11.0




Networking Computer Style

A markov chain is a Bayesian Network

O

O

O O O

We may model “lattices” through Markov Networks

¢ ¢ "
@ @ o
@ o o

Markov random field example “ two-way interactions”
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Inference on

» Markov Networks
» Bayesian(Belief) Networks

Via
» Graphical Models (see lecture notes).
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Daano Ka Filter

Applied to Sequential filtering problems

Can also be applied to smoothing problems

Solution via Recursive Bayesian Estimation

Approximate Solution

Can work with non-Gaussian distributions/non-linear dynamics
Applicable to many other problems e.g. Spatial Inference

vV v v v Vv Y
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Bayesma Pitamah Mantra

P(YilXk) D P(Xi Xi—1) P(Xe—1| Y1:k-1)
N——

> Xi—1

P(Xk| Y1) = 1
D> P(Yil Xi) P(Xic| Xi—1) P(X—1| Yi—1)
Xk Xk—1

1. From the Chapman-Kolmogorov equation
2. The measurement model/observation equation
3. Normalization Constant

When can this recursive master equation be solved?
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Problem Hai, par usey aur mushkil banao: Mazaa ata
hai

How may we relax the Gaussian assumption?
If P(Xk|Xk—1) and P(Yk|Xk) are non-gaussian;

How do we represent them, let alone perform these integrations in (2)
& (3)?
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Daney Filter

Generically

pmf/pdf defined as a weighted sum
— Recall from Sampling lecture
— Response Surface Modeling lecture
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Daney Gin Rahe Hain

In the filtering problem
P(Xk| Y1.k)

P(Yil X P(Xk| Xk _+)
QXX+, Vi)

Wy o< Wj_q

N
(S0) P(Xk| Yik) =Y wiid(Xe — Xi)
i=1
Where the x|, ~ Q(Xk|X]_,, Y«)
The method essentially draws particles from a proposal distribution
and recursively update its weights.

= No gaussian assumption
= Neat
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Ichuka Dana, Ichuka Dana, Daney ke upar Daana

4 Cdf(W)

T
w' w” w2 wb wi wd w?

Unijfdrm wejghts
m Sample

tiiitiic: Resampling —— more probable
R R RN states more

Many points
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All Uncertainties killed with the Likelihood Stone
ésymptotical'ly: ‘
Q ~ P(Xk|Xj,_y) + Common choice Q = P(Xx|X_4)
Sometimes feasible to use proposal from process noise
Then
wie oc wi_ P(Yi| X))
If resampling is done at every step:
wj, o p(YilX{)

(Wy_y 1N)
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SIRji, hum bhi hain important

SIR -Sampling Importance Resampling
Input {X}_,,wl_,}, Yk
fori=1:N
X,’(" ~ P(Xk|X,§'_1)
Wi = P(Yk|X)

end
=2 W;i
Wi = Wi /n

{xk,w.} « Resample [{X}, w,}]
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Totally Cooked Up Example

Xk—1 25Xk_1
X = 8cos(1.2k Vi—
k="g tioxe, "8cos(1:2k)+ Vi
X2
Yie = ZK 4
w

Tk ~ N(Oa R)

Vk—1 ~ N(0, Qk_1)
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http:cos(1.2k

Brain Maalish

Sar jo tera chakaraye
Ya matrix dooba jaye
Aja pyare, paas hamare,
Kahe Ghabaraye,

Kahe Ghabaraye

Brain Maalish!

» Covered much, but small portion of the subject
» Computational Atmospheric Statistics at some point in time.
» DO THE PROBLEMS!
By email, by skype.
» In person in August.
Thanks much for coming, critical feedback welcome!

v
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