
Summary IIT(D)

Quantifying Uncertainty

Sai Ravela

M. I. T

Last Updated: Spring 2013

Quantifying Uncertainty 1

Summary IIT(D)

Typical Problems

�	 What happened in past, "climate", "economy",

"terrorism","evolution"

�	 What is the future of "weather," "climate", "economy"...
�	 How good are my models?
�	 What is a good model?

These are fundamental challenges of all time, but climate related
issues are front and center now.

Quantifying Uncertainty 2

�

�

�

Summary IIT(D)

Objectives

Predictions demand a quantification of uncertainty

Estimates demand a quantification of Uncertainty

Inference demands a quantification of Uncertainty

Quantifying Uncertainty 3

I

I

I

�

�

Summary IIT(D)

Quantifying Uncertainty

Uncertainty can be Aleatory: a random outcome.
Uncertainty can be Epistemic: an unknown quantity to be
estimated or imputed.

Quantifying Uncertainty 4

I

I

�

�

�

Summary IIT(D)

Systems Perspective

Uncertainty in Model Predictions: State Estimation
Uncertainty in Model Parameters: Parameter Estimation
Uncertainty in Model Structure: Model Selection

These are most easily seen in time-dependent processes, though it is
just as valid for statistical predictive and emperical modeling.

Quantifying Uncertainty 5

I

I

I

Summary IIT(D)

It might take both

This is a dilemma for modeling many physical processes:
1.	 Physics-based models applicable to the full-range of dynamics,

but difficult to implement and often with too-many degrees of
freedom for the problem of interest.

2. Empirical ones can’t generalize, limited predictability.
Often, it takes both skills to build a good model but the two don’t
speak the same language or communicate well.
As Walker says:
There is, today, always a risk that specialists in two subjects, using
languages full of words that are unintelligible without study, will grow
up not only without knowledge of each other’s work, but also will
ignore the problems which require mutual assistance.

Quantifying Uncertainty 6

�

�

�

�

�

�

Summary IIT(D)

Main Areas

Linear Models and Gaussian Inference
Two-point Boundary Value Problems
Filters and Smoothers
Ensemble Methods
Sampling and Markov Chain Monte-Carlo
Hierarchical Bayes

This was a lot of material (but there is more to cover).

Quantifying Uncertainty 7

I

I

I

I

I

I

�

�

�

�

�

�

Summary IIT(D)

Central Limit, a good start?

The sampling distribution of the statistic can be estimated by

repeatedly drawing n-length sample sequences from a

distribution, calculating the statistic and then considering the

resulting distribution.

If the original distribution had a mean m and variance s, then in

large n, the sampling distribution:

Converges to a Gaussian.

sThe sample mean converges ms → m and has variance v = n

The sample variance converges as (n − 1)v = χ2(n − 1) .
Small sample problem!

Quantifying Uncertainty 8

I

I

I

I

I

I

Summary IIT(D)

How to Solve?

Least Squares:
J(α) := ||x − Hα||

Understand the notation and terms.

dJ/dα = 0 (1)
⇒ HT x = HT Hα (2)
⇒ α̂ = (HT H)−1HT x (3)

Least Squares Estimate using the Pseudo inverse. Stationary Point.

Quantifying Uncertainty 9

Summary IIT(D)

AR model identification

Quantifying Uncertainty 10

Summary IIT(D)

Bayesian Estimate

P(α|x) ∝ P(x |α)P(α) (4)

Maximum a posteriori (Bayes) estimate, when η ∼ N(0, CXX) and
α ∼ N(ᾱ, Cαα), of mean and covariance:

α̂ = ᾱ+ CααHT (HCααHT + Cxx)
−1(x − Hᾱ)

Ĉαα = (HT C−1H + C−1
xx αα)

−1

= Cαα − CααHT (HCααHT + Cxx)
−1HCαα

Chalk talk: HOW IS THIS DERIVED?

Quantifying Uncertainty 11

Summary IIT(D)

Spring Mass System

Ẋ = AX + F (5)

Quantifying Uncertainty 12

Summary IIT(D)

Discretization

We can solve
Ẋ = AX + F (6)

using numerical methods, e.g. Runge-Kutta methods (In matlab,

ode45). Let’s do demo.

But to understand, let’s take an Euler discretization with zero-order

hold of forcing. Then

AΔtAd = e = L−1[(sI − A)−1]t=Δt (7)
Fd = A−1(Ad − I)B (8)

xt+Δt = Adxt + Fd (9)

Quantifying Uncertainty 13

Summary IIT(D)

We Just Say

xn+1 = M(xn; α) (10)

Quantifying Uncertainty 14

Summary IIT(D)

Time Dependent Example

xn+1 = M(xn; α)

y = Hxn + η
n

We have assumed the parameter vector is known constant, the model
is deterministic, the observations are linearly related, but additively
noisy and time-independent with η = N(0, R). We are given a series
of measurements y

0
. . . y

m
and we are asked to estimate the initial

condition x0. We may simply produce a least-squares function:

mm
J(x0) := (x0 − xb)

T C−1 (yi − Hxi)
T R−1(yi − Hxi)00 (x0 − xb) +

i=1

Quantifying Uncertainty 15

Summary IIT(D)

“Forward Backward”

Forward(from λ)

xi = M(xi−1; α)

0 < i < M

Backward(from x)

λm = HT R−1(y − Hxm)m

∂MT

λi = λi+1 + HT R−1(y − Hxi)i∂xi

∂MT

x̂0 = xb + C00 λ1∂x0

Quantifying Uncertainty 16

Summary IIT(D)

Uncertainty?
Via Linearization

Forward(you’ll need this in the end)

∂M ∂MT

Cii = Ci−1i−1 0 < i ≤ m
∂xi−1 ∂xi−1

What about backward? Convenient via information form:

ˆ = HT R−1HImm

∂MT ∂M
Îii = Ii+1i+1 + HT R−1H

∂xi ∂xi � �−1
∂M ∂MT

ˆ C−1 ˆC00 = 00 + I11
∂x0 ∂x0

∂MHere L = is the Jacobian of M and LT is its adjoint. ∂xi

Quantifying Uncertainty 17

Summary IIT(D)

Example: Double Pendulum

With a measurement every second with uncertainty same as C00
0.0130 -0.0033 0.0127 -0.0009

Ĉ00 = 1.0e-03 * -0.0033
0.0127

0.1259
-0.0004

-0.0004
0.0268

-0.0148
-0.0061

-0.0009 -0.0148 -0.0061 0.2176

Quantifying Uncertainty 18

Summary IIT(D)

The Missing Data Estimate and Uncertainty

Estimate:

M

ŷ

=

=

Cyx C−1
xx

Cyx C−1
xx x̂

(11)

(12)
(13)

Uncertainty follows from objective:

J(xi) := (yi − Mxi)
T C−1

yy (yi − Mxi)

+(xi − x̄i)
T C−1

xx (xi − x̄i) (14)

Quantifying Uncertainty 19

Summary IIT(D)

Fisher Information

Uncertainty Estimate:

d2J/dxi
2

Ĉyy

=

=

MT C−1
yy M + C−

xx 1

(C−1
xx Cxy C−1

yy Cyx C−1
xx + C−1

xx)
−1

(15)

(16)
(17)

Uncertainty follows from objective:

J(xi) := (yi − Mxi)
T C−1

yy (yi − Mxi)

+(xi − x̄i)
T C−1

xx (xi − x̄i) (18)

Quantifying Uncertainty 20

Summary IIT(D)

Towards a Nonlinear World.

P1θ̈ 1 + P3θ̈ 2 cos(θ2 − θ1) − P3θ̇2

2 sin(θ2 − θ1) +
P4g sin θ1 = 0

.•
θ1 L1	 P2θ̈ 2 + P3θ̈ 1 cos(θ2 − θ1) + P3θ̇1

2 sin(θ2 − θ1) +
P5g sin θ2 = 0

θ2 L2

Let,

P1 = (m1 + m2)L2
1

P2 = m2L2
2

P3 = m2L1L2

P4 = (m1 + m2)L1

P5 = m2L2

Quantifying Uncertainty 21

Summary IIT(D)

Uncertainty Propagates in Time-Depdendent
Processes

X f 0 X f 1 X f 2 X f n

M ≡ M(xn; αn)

xn+1 = M(xn; αn) + ωn

M: -Physical or Statistical Model

Quantifying Uncertainty 22

Summary IIT(D)

Filters and Smoothers

Sequential Filtering: m
P(xn|y . . . y) ∝ P(y |xn) P(xn|xn−1)P(xn−1|y . . . y (19))

1 n n 1 n−1
xn−1

= P(y |xn)P(xn|y . . . y) (20)
n 1 n−1

f = P(y |xn)P(x) (21)nn

The recursive form is simple when a perfect model is assumed, but

the Kolmogorov-Chapman equation has to be used in the presence of
model error. P(xn|y . . . y) is the forecast distribution or prior

1 n−1
distribution also seen as P(xf)n

Quantifying Uncertainty 23

Summary IIT(D)

Write the Objective

Sequential Filtering:

1 f)T P−1 fJ(xn) := (xn − xn f (xn − xn) +
2

1
(y − Hxn)

T R−1(y − Hxn) (22)

n n

We have assumed a linear observation operator y = Hxn + η, with

2

n
η ∼ N(0, R).

Quantifying Uncertainty 24

Summary IIT(D)

Find the Stationary Point

Sequential Filtering:

fx̂ n = xn + Pf HT (HPf HT + R)−1(y − Hxf
n) (23)

n
a = x (24)

= (HT R−1H + P−1)−1 (25)Pa f

= Pf − Pf HT (HPf HT + R)−1HPf (26)

Then, launch a new prediction xf = M(xn) and the new uncertainty n+1
∂M(predicted) is Pf = LPaLT , where L = when the model is ∂xn

nonlinear. Propagating produces the moments of P(xn+1|y . . . y).
1 n

Quantifying Uncertainty 25

Summary IIT(D)

Smoother

We are interested in the state estimates at all points in an interval,
that is:

P(x1 . . . xn|y . . . y) (27)
1 n

The joint distribution can account for model errors, state and
parameter errors within its framework.
We break it down via Bayes Rule, Conditional Independence and
Markov assumption, and marginalization and perfect
modelassumption, leading to a coupled set of equations that are
recursively solved.

Quantifying Uncertainty 26

Summary IIT(D)

Fast Calculation

Aa = Af + Ãf Ω̃fT [US−2UT][Z − Ωf]
(n, s) (n, s) (n, s)(s, n)(n, s)(s, s)(s, n)(n, s) (n, s)

Return by right to left, multiply; FAST, low-dimensional

Aa =Af + Ãf X5

=Af (Is + X4)

=Af X5

A “weakly” nonlinear transformation (X5 ≡ X5(Af))

Quantifying Uncertainty 27

Summary IIT(D)

Plug and Play

So,

•• •
• •• • •

•
y

1

x0 x1

Aa
0 = Af

0Is ← No measurement

Aa = Af
1X 51 ← Filter, same as X51

As
1 = Aa

1Is ← No future measurement

ΩfTAs = Aa
0 + Ãa ˜

1 [U1S−2U1
T][Z1 − Ωf

1]0 0 1

= Aa
0X 51

Note: X 5 here is same as X5 in earlier slide.

Quantifying Uncertainty 28

Summary IIT(D)

Fixed Interval & Fixed Lag

Fixed Interval
Y1 Yn−1 Yn

x0 x1 x2 x3 xn−1 xn

P(x0|y · · · y)
1 n

P(x1|y1
· · · Yn) Smoother

. . .

P(xn|y · · · y) ← Filter
1 n

⎫ ⎪⎬ ⎪⎭

Quantifying Uncertainty 29

Summary IIT(D)

Fixed Interval & Fixed Lag

Fixed Lag
Y1 Yn−1 Yn

x0 x1 x2 x3 xn−1 xn

Y1 Yn−1 Yn

x0 x1 x2 x3 xn−1 xn

) ∼P(x0|y . . . y = P(x0|y . . . y), (L < n)
1 n 1 L

P(xi |Y0 . . . y)
i+L

Smothed up to a “window”

Quantifying Uncertainty 30

Summary IIT(D)

Backward Recursion: Fast Ensemble Smoothing

Key Assumption: Jointly Gaussian Distributions.

NN
As = Aa X 5jk k

j=k+1

NN
Ck = X 5j = X 5k+1Ck+1

j=k+1

Quantifying Uncertainty 31

Summary IIT(D)

Fixed Lag is FIFO

k+wN
As = Aa X 5jk k

j=k+1

= Aa
k Ck

= X 5−1Ck k Ck−1X 5k+w

Quantifying Uncertainty 32

Summary IIT(D)

Fixed Interval on Lorenz
 Fixed Interval On Lorenz

Lorenz-95 system (Lorenz and Emanuel 1998). The
continuous time Lorenz equations are:

dxi
dt

¼ "xi"2xi"1 þ xi"1xiþ1 " xi þ u; (30)

where i=1, ... n is cyclical (i.e. x0=xn, x−1=xn−1, xn+1=x1)
and can be interpreted as a surrogate spatial index. The
constant forcing term is u=8 in all simulations and
integrated forward using a fourth-order Runge–Kutta
scheme (Press et al. 1988).

For identical-twin experiments, a state vector of dimen-
sion n=100 is generated from a random zero-mean
Gaussian initial condition with a standard deviation of
2.0. The system is integrated for 8,192 steps to remove
transients, thence marking the true initial condition at the
beginning of the smoothing interval (t=0). The system is
integrated further until t=T and synthetic observations are
generated at specified measurement times by adding
uncorrelated zero-mean Gaussian noise with a standard
deviation of 0.2. A first guess of the true state at t=0 is
obtained by perturbing the true initial state vector by
uncorrelated zero-mean Gaussian with standard deviation
2.0. Then an ensemble of 100 random initial condition
samples is obtained by perturbing the first guess with 100
vectors of uncorrelated zero-mean Gaussian random
variables with a standard deviation of 1.0. The smoothing
algorithms in our experiments generate estimates at every
time step.

In the first experiment the system is integrated in the
interval [0, 1] with a dimensionless time step Δt=0.01,
giving M=100. The observation step is 0.05, giving r=5.
The state is observed at every other location so m=n/2=50.
Smoothed analyses are produced at every model time step,
therefore S=100 (the last time step cannot be smoothed),
and T=[0, 1, 2,..., 99]. Lorenz and Emanuel (1998)
associate the dimensionless time step 0.01 with a real time
of 1.2 h, implying that our measurement interval
corresponds to 6 h and our fixed-interval smoothing
window is 120 h. Figure 1 compares the estimation error
(over all states) obtained from an ensemble Kalman filter

(Evensen 2004) with those obtained from the V1 and FBF
ensemble smoothing algorithms. The error in each state is
the difference between the estimate (smoothed analysis
ensemble mean) and the known true values. V1 and FBF
are expected to have, and give, the same errors, which are
smaller than the ensemble filter errors at all times except
the endpoints.

Our second experiment uses the same inputs as the first
but considers the two fixed-lag smoothers. Figure 2
compares the root-mean-squared errors obtained from
V1-lag and FIFO-lag for fixed lag lengths of L=1, 5, 9,
and 13 measurements, corresponding to W=5, 25, 45 and
65 model time steps. In every case, the FIFO-lag and V1-
lag estimates and errors are the same, though some
variation could be expected in principle, due to the
numerical inversion in the FIFO-lag implementation.

We now turn to the computational performance of the
four smoothing algorithms. The unit costs defined earlier
can be written as Cu=nN

2, Cx=N
3 and Cx6∼3N3. Here, n is

the state size and N is the ensemble size (see Table 1 for a
list of symbols). The incremental costs of the four
algorithms are then: ΔCV1=nN

2sR(R+1)/2, ΔCFBF=
R(N3+snN2), ΔCV1-lag=LR sn N2 and ΔCFIFO−lag=
R(3N3+snN2). Please recall that R is the number of
observations over the interval, L is the lag length in
number of observations, and s is the ratio of the number of
smoothing analysis times to the number of observations on
the interval. We verify the complexity computations on the
Lorenz system, with n=100 and N=100. States are
completely observed at every time step so m=n and r=1.
Analyses are also produced at every model time step,
so s=1.

Fixed interval smoothing: FBF is faster than V1 A
comparison of ΔCV1 and ΔCFBF fixed-interval smoothing
algorithms suggests that V1 will require more computa-
tional time when R>1+2N /sn. In practical interval-
smoothing problems the ratio of ensemble to state size
(N /n) is typically very small so FBF becomes more
efficient very rapidly. The superior performance of FBF is
expected as V1 computation time grows quadratically with

Fig. 1 Comparison of V1 and FBF with ensemble Kalman filter
(EnKF). The error is computed between the analysis ensemble mean
and truth. Observations are spaced every five model steps, the
interval length is 100 and smoothed analyses are sought at every
model time step. As expected, V1 and FBF give identical estimates;
they only differ in computational requirements

Fig. 2 Comparison of V1-lag and FIFO-lag fixed-lag ensemble
smoothing estimates for different lag window lengths. The other
parameters are identical to those used in Fig. 1. V1-lag and FIFO-lag
give identical estimates although there can be numerical differences.
Short fixed lags give results closer to the ensemble Kalman filter,
while longer fixed lags give results closer to the fixed interval
smoother (compare to Fig. 1)

129

Quantifying Uncertainty 33

Costs of Inference, Toy Problem

the fixed-interval length, while the FBF computation time
grows linearly. Figure 3 indicates for the Lorenz-95
example that V1 smoothing takes much more time than
filtering, becoming prohibitively expensive for large
problems. By contrast, FBF smoothing adds only a modest
amount of computational effort to filtering, with the
computational time growing with interval length at
approximately the same rate as filtering alone.

Fixed-lag smoothing: FIFO-lag is faster than V1-lag,
beyond a certain lag length A comparison between FIFO-
lag and V1-lag suggests that V1-lag is more expensive
when L>1+3N /sn. This result is independent of the
interval length. Therefore, when longer lag lengths are
needed, it is preferable to use FIFO-lag. In our conserva-
tive Lorenz-95 example with s=1 and n=N, the threshold
lag is L=4, as a comparison of Figs. 4 and 5 shows.

As one of the motivations for fixed-lag smoothing as an
approximation to fixed-interval smoothing is computa-
tional savings, therefore a comparison between the two is
instructive. It is clear that V1-lag is less expensive than V1
for lag lengths smaller than the interval. A comparison of
ΔCV1-lag and ΔCFBF suggests that V1-lag is more
expensive when L>1+N /sn. When N /sn<1, FBF is faster
than V1-lag after a very short lag length and it is
unnecessary to use fixed-lag approximation for an inter-
val-smoothing problem purely for saving computational
time. In the Lorenz experiments, where N=n=100 and

s=1, V1-lag is more expensive than FBF when the lag
L>2, as seen in Fig. 4. A comparison of ΔCFIFO−lag and
ΔCFBF suggests that FIFO-lag is more expensive by a
fixed factor. Figure 5 indicates that for the Lorenz-95
experiment here FIFO-lag costs about 1.45 times more
than the FBF cost. As FIFO-lag consumes the same
memory as V1-lag, when memory is an issue, it may be
the preferred FIFO-lag approximation to FBF.

It should be emphasized here that in most practical
applications N /n<<1, but we have conservatively chosen
N /sn=1 for our experiments. In the former case, the
computational benefits of the proposed algorithms (FBF,
FIFO-lag) are even better. In the case where the number of
smoothed analysis times is less than the number of
observed time, i.e. s<1, these bounds can worsen, but not
in most practical situations the ratio N /sn can still be
expected to remain much smaller than 1.

Fig. 3 Computational times vs fixed interval length. a Model
propagation only. b Additional computational time (over model
propagation) for ensemble Kalman filtering. c Additional computa-
tional time (over model propagation and filtering) for V1 smoothing.
d Additional computational time (over model propagation and
filtering) for FBF smoothing. The additional cost of V1 smoothing
can be much more than filtering alone, while the additional cost of
FBF smoothing is minor. See text for detailed definition of each
computational time

1 2 3 4 5 6 7 8 9 10 11 12 13
0

5

15

20

25

30

V1-lag--->
FBF

50
100

90

C
om
pu
ta
tio
na
lT
im
e
(s
)

10

35

Fig. 4 Computational times required to estimate model states
throughout fixed intervals of 100, 500, and 900 for FBF (fixed-
interval smoothing) and V1-lag (fixed-lag smoothing). The FBF
option (which does not depend on lag value) is shown at far left. V1-
lag option is shown for a range of lags from one through 13. FBF is
faster than V1-lag for lags greater than two

C
om
pu
ta
tio
na
lT
im
e
(s
)

1 2 3 4 5 6 7 8 9 10 11 12 13
0

2

4

6

8
10

12

FBF
100

900

500

100

FIFO-Lag

900

500

Fig. 5 Computational times required to estimate model states
throughout fixed intervals of 100, 500, and 900 for FBF (fixed-
interval smoothing) and FIFO-lag (fixed-lag smoothing). The FBF
option (which does not depend on lag value) is shown at far left. The
FIFO-lag option is shown for a range of lags from one through 13.
FBF is faster than FIFO-lag by a fixed factor. FIFO-lag computa-
tional time is nearly independent of lag (small fluctuations are
related to random differences in time required to perform singular
value decompositions at different lags)

130

Summary IIT(D)

Costs of Inference, Toy Problem

Quantifying Uncertainty 34

Summary IIT(D)

Fixed Lag

Fixed Lag Smoother

Fixed Lag

Fixed Lag Smoother

Lorenz-95 system (Lorenz and Emanuel 1998). The
continuous time Lorenz equations are:

dxi
dt

¼ "xi"2xi"1 þ xi"1xiþ1 " xi þ u; (30)

where i=1, ... n is cyclical (i.e. x0=xn, x−1=xn−1, xn+1=x1)
and can be interpreted as a surrogate spatial index. The
constant forcing term is u=8 in all simulations and
integrated forward using a fourth-order Runge–Kutta
scheme (Press et al. 1988).

For identical-twin experiments, a state vector of dimen-
sion n=100 is generated from a random zero-mean
Gaussian initial condition with a standard deviation of
2.0. The system is integrated for 8,192 steps to remove
transients, thence marking the true initial condition at the
beginning of the smoothing interval (t=0). The system is
integrated further until t=T and synthetic observations are
generated at specified measurement times by adding
uncorrelated zero-mean Gaussian noise with a standard
deviation of 0.2. A first guess of the true state at t=0 is
obtained by perturbing the true initial state vector by
uncorrelated zero-mean Gaussian with standard deviation
2.0. Then an ensemble of 100 random initial condition
samples is obtained by perturbing the first guess with 100
vectors of uncorrelated zero-mean Gaussian random
variables with a standard deviation of 1.0. The smoothing
algorithms in our experiments generate estimates at every
time step.

In the first experiment the system is integrated in the
interval [0, 1] with a dimensionless time step Δt=0.01,
giving M=100. The observation step is 0.05, giving r=5.
The state is observed at every other location so m=n/2=50.
Smoothed analyses are produced at every model time step,
therefore S=100 (the last time step cannot be smoothed),
and T=[0, 1, 2,..., 99]. Lorenz and Emanuel (1998)
associate the dimensionless time step 0.01 with a real time
of 1.2 h, implying that our measurement interval
corresponds to 6 h and our fixed-interval smoothing
window is 120 h. Figure 1 compares the estimation error
(over all states) obtained from an ensemble Kalman filter

(Evensen 2004) with those obtained from the V1 and FBF
ensemble smoothing algorithms. The error in each state is
the difference between the estimate (smoothed analysis
ensemble mean) and the known true values. V1 and FBF
are expected to have, and give, the same errors, which are
smaller than the ensemble filter errors at all times except
the endpoints.

Our second experiment uses the same inputs as the first
but considers the two fixed-lag smoothers. Figure 2
compares the root-mean-squared errors obtained from
V1-lag and FIFO-lag for fixed lag lengths of L=1, 5, 9,
and 13 measurements, corresponding to W=5, 25, 45 and
65 model time steps. In every case, the FIFO-lag and V1-
lag estimates and errors are the same, though some
variation could be expected in principle, due to the
numerical inversion in the FIFO-lag implementation.

We now turn to the computational performance of the
four smoothing algorithms. The unit costs defined earlier
can be written as Cu=nN

2, Cx=N
3 and Cx6∼3N3. Here, n is

the state size and N is the ensemble size (see Table 1 for a
list of symbols). The incremental costs of the four
algorithms are then: ΔCV1=nN

2sR(R+1)/2, ΔCFBF=
R(N3+snN2), ΔCV1-lag=LR sn N2 and ΔCFIFO−lag=
R(3N3+snN2). Please recall that R is the number of
observations over the interval, L is the lag length in
number of observations, and s is the ratio of the number of
smoothing analysis times to the number of observations on
the interval. We verify the complexity computations on the
Lorenz system, with n=100 and N=100. States are
completely observed at every time step so m=n and r=1.
Analyses are also produced at every model time step,
so s=1.

Fixed interval smoothing: FBF is faster than V1 A
comparison of ΔCV1 and ΔCFBF fixed-interval smoothing
algorithms suggests that V1 will require more computa-
tional time when R>1+2N /sn. In practical interval-
smoothing problems the ratio of ensemble to state size
(N /n) is typically very small so FBF becomes more
efficient very rapidly. The superior performance of FBF is
expected as V1 computation time grows quadratically with

Fig. 1 Comparison of V1 and FBF with ensemble Kalman filter
(EnKF). The error is computed between the analysis ensemble mean
and truth. Observations are spaced every five model steps, the
interval length is 100 and smoothed analyses are sought at every
model time step. As expected, V1 and FBF give identical estimates;
they only differ in computational requirements

Fig. 2 Comparison of V1-lag and FIFO-lag fixed-lag ensemble
smoothing estimates for different lag window lengths. The other
parameters are identical to those used in Fig. 1. V1-lag and FIFO-lag
give identical estimates although there can be numerical differences.
Short fixed lags give results closer to the ensemble Kalman filter,
while longer fixed lags give results closer to the fixed interval
smoother (compare to Fig. 1)

129

Quantifying Uncertainty 35

Summary IIT(D)

Ways to simplify Models for Uncertainty Propagation

1.	 Spectral Truncation: Find a few leading directions of Covariance
or Model and propagate them. Breed Vectors. Calculate a
reduced local linear model from ensemble.

2.	 Localization: Localize filtering and smoothing, use
scale-recursive decomposition.

3.	 Model Reduction: Reduce order of linearized model, construct a
reduced model from snapshots.

4.	 Sample Input-Output pairs to create a simple auxiliary model.

Quantifying Uncertainty 36

Summary IIT(D)

SV Ensemble

Now,let C1 be a metric on vector u1 and let C0 be a metric on u0

< Lu0, C1Lu0 > < u0, L#C1Lu0 >
λ = =

< u0, C0u0 > < u0, C0u0 >

Maximize ratio for the kth perturbation: λk :

(k) (k)⇒ L#C1Lu0 = λk C0u0

Which is a generalized eigenvalue problem. Note that when C1 = I,
and C0 = P0

f then u(k) are leading directions of Pf
1 1

Quantifying Uncertainty 37

Summary IIT(D)

Breeding

•• •
• •• • •

•

Align with leading Initial
directions of error growth Perturbation
(Lyapunov vectors)

Qi+1Ri+1 = L Qi 1 1
 1 1

TLMQ R decomposition

Q0 ≡ I Q0 → Qi · · · Qk 1 1

forgetsQ0

Quantifying Uncertainty 38

�

�

Summary IIT(D)

Alternate form

Let X = USV T be the singular value decomposition and here
Sii ≥ Si+1i+1. Then D = X T X = V ΛV T where Λ = S2, a small
matrix.
We calculate the eigen vectors and eigen values of D recursively.
Let D1 = D; and for k = 1 . . . d

vk = PowerIteration(Dk) (28)
λkk = vk

T Dk vk (29)
Dk+1 = Dk − vk λkk vk

T (30)
√

Noting that Sd = Λd , we obtain Ud as a skinny nxd matrix:

= XVdS−1 (31)Ud d

Store Ud and Λd and use them to calculate the norm in an
application. DEMO IN MATLAB

Quantifying Uncertainty 39

I

I

�

�

Summary IIT(D)

Markov Chain Monte Carlo

Monte Carlo sampling made for large scale problems via Markov
Chains

� Monte Carlo Sampling

� Rejection Sampling

� Importance Sampling

� Metropolis Hastings

� Gibbs

Useful for MAP and MLE problems

Quantifying Uncertainty 40

I

I

Summary IIT(D)

Rejection Sampling

y

x

αQ(x)

P(x)

αQ(x) ≥ P(x)

xi ∼ Q(x), yi ∼ U[0, αQ(xi)]

Quantifying Uncertainty 41

Summary IIT(D)

Importance Sampling

�
f (x)P(x)dx =

�
f (x)

P(x)
Q(x)

Q(x)dx

∼=
1
S

Sm

s=1

f (xs)
P(xs)
Q(xs)

, xS ∼ Q(x)

P(xs) .≡ Importance of sample = ωsQ(xs)

S1 m
ÎS = f (xs)ωsS

s=1

Quantifying Uncertainty 42

Summary IIT(D)

Markov Chain Monte Carlo

1.	 A proposal distribution from local moves (not globally, as in
RS/IS).
1.1 Local moves could be in some subspace of state space.

2.	 Move is conditioned on most recent sample

Quantifying Uncertainty 43

Summary IIT(D)

Metropolis Hastings

Draw x I ∼ Q(x I; x), the proposal distribution
P(x I)Q(x ; x I)

a = min 1,
P(x)Q(x I; x)

Accept x’ with prob. a, else retain x.

⇒ No need to have pmf in Q(x I; x)
⇒ Satisfies detailed balance
⇒ Equilibrium distribution is target distribution

Note: PT (x → x I) = aQ(x I; x)

Quantifying Uncertainty 44

Summary IIT(D)

Gibbs Sampler: a different transition
 Gibbs Sampler: a different transition

Gibbs Sampler: a different transition

Let x = x1, · · · , xn
(a huge dimensional space) and we want to sample
P(x) = P(x1 . . . xn)

P(x) = P(x1)P(x2|x1)P(x3|x2, x1) . . . P(xn|xn�1 . . . x1)

Gibbs:

P(x1)! P(x2|x1)! P(x3|x1, x2)! . . .

! P(xn|xn�1 . . . x1)! P(x1|xi 6=1)! P(x2|xi 6=2) . . .

(note notation change)

Let x = x1, · · · , xn

(a huge dimensional space) and we want to sample

P(x) =P(x1 · · · xn)

P(x) = P(x1)P(x2|x1)P(x3|x2, x1) . . . P(xn|xn−1 . . . x1)

Gibbs:

P(x1) → P(x2|x1) → P(x3|x1, x2) → · · ·
→ P(xn|xn − 1 . . . x1) → P(x1|xi i=1) → P(x2|xi i=2) . . .

Quantifying Uncertainty 45

Summary IIT(D)

Slice Sampler

Gap is Ok

(x , y)

P(y |x) = u[0, P(x)] y ∼ P(y |x)
x ∼ U[xmin, xmax]

1 P(x) ≥ y
P(x |y) ∝ L(x ; y) =

0 otherwise

Accept if L(x ; y) = 1, reject otherwise

Quantifying Uncertainty 46

Summary IIT(D)

Graphically

NN
P(βi ,α|{y }) ∝ P(y |βi)P(βi |α)P(α)

i i
i=1

α

βi

y
i

repeated N times
i = 1 . . . N

Quantifying Uncertainty 47

Summary IIT(D)

Example

(Elsner & Jagger 04)
yi ∼ Poisson(λi)

log(λi) = β0 + β1CT 1 + β2NAOI
+ β3CTI × NAOI

β ∼ N(µ, Σ−1)

Also read "Regression Machines" for Generalized Linear Models

Quantifying Uncertainty 48

Summary IIT(D)

Constructing priors

A.	 Conjugate Priors: The Gamma Distribution is a conjugate prior of
the Poisson Distribution; so that is one route.

B.	 Non-informative Prior (flat)
C.	 Bootstrap-Prior: Use a portion of the data to estimate

parameters by MLE.

Other parameter estimates
Frequentist⇒ MLE
(e.g. GLM)

Quantifying Uncertainty 49

Summary IIT(D)

Generalizing

a Hierarchical relationship between
variables

b All are random
c Represented by directed acyclic

graphs
⇒ Bayesian Networks

A B

C

D

F

E parent
child

Quantifying Uncertainty 50

Summary IIT(D)

example

Quantifying Uncertainty 51

Summary IIT(D)

Networking Computer Style

A markov chain is a Bayesian Network

We may model “lattices” through Markov Networks

Markov random field example “ two-way interactions”

Quantifying Uncertainty 52

�

�

�

Summary IIT(D)

Inference on
Markov Networks

Bayesian(Belief) Networks

Via
Graphical Models (see lecture notes).

Quantifying Uncertainty 53

I

I

I

�

�

�

�

�

�

Summary IIT(D)

Daano Ka Filter

Applied to Sequential filtering problems
Can also be applied to smoothing problems
Solution via Recursive Bayesian Estimation
Approximate Solution
Can work with non-Gaussian distributions/non-linear dynamics
Applicable to many other problems e.g. Spatial Inference

Quantifying Uncertainty 54

I

I

I

I

I

I

Summary IIT(D)

Bayesma Pitamah Mantra

m
P(Yk |Xk) P(Xk |Xk−1)P(Xk−1|Y1:k−1)1 1

Xk −12 1 1
1P(Xk |Y1:k) = m m

P(Yk |Xk)P(Xk |Xk−1)P(Xk−1|Yk−1)
Xk Xk −1 1 1

3

1. From the Chapman-Kolmogorov equation
2. The measurement model/observation equation
3. Normalization Constant

When can this recursive master equation be solved?

Quantifying Uncertainty 55

︸ ︸
︸

Summary IIT(D)

Problem Hai, par usey aur mushkil banao: Mazaa ata
hai

How may we relax the Gaussian assumption?

If P(Xk |Xk−1) and P(Yk |Xk) are non-gaussian;

How do we represent them, let alone perform these integrations in (2)
& (3)?

Quantifying Uncertainty 56

Summary IIT(D)

Daney Filter

Generically
Nm

P(X) = wi δ(X − X i)
i=1

pmf/pdf defined as a weighted sum
→ Recall from Sampling lecture
→ Response Surface Modeling lecture

Quantifying Uncertainty 57

Summary IIT(D)

Daney Gin Rahe Hain

In the filtering problem
P(Xk |Y1:k)

i i P(Yk |Xk
i)P(Xk

i |Xk
i
−1) wk ∝ wk−1 Q(Xk

i |Xk
i
−1, Yk)

Nm
(So) P(Xk |Y1:k) ∼ wk δ(Xk − X i = i

k)
i=1

Where the xk
i ∼ Q(Xk |Xk

i
−1, Yk)

The method essentially draws particles from a proposal distribution

and recursively update its weights.

⇒ No gaussian assumption
⇒ Neat

Quantifying Uncertainty 58

Summary IIT(D)

Ichuka Dana, Ichuka Dana, Daney ke upar Daana

Cdf(w)w4
w5

w3
w6

w2
w7

w1

X 1X 2X 3X 4X 5X 6X 7

Uniform weights
w1 w7 w2 w6 w3 w5 w4

Sample
Resampling more probable

states more

Many points

Quantifying Uncertainty 59

Summary IIT(D)

All Uncertainties killed with the Likelihood Stone

Asymptotically:
 QQ ∼ P(Xk |Xk
i
−1) ← Common choice Q ≡ P(Xk |X i

k−1)

Sometimes feasible to use proposal from process noise

Then

wK
i ∝ wk

i
−1P(Yk |X i

k)

If resampling is done at every step:

wi
k ∝ p(Yk |X i

k)

(wk
i
−1 ∝ N

1)

Quantifying Uncertainty 60

Summary IIT(D)

SIRji, hum bhi hain important

SIR -Sampling Importance Resampling
Input {Xk

i
−1, wk

i
−1}, Yk

for	 i = 1 : N

X i

k ∼ P(Xk |X i
k−1)

wi = P(Yk |X i
k k)

end
η = i w

i
k

wi = wk
i /ηk

{xk
i , wk

i } ← Resample [{Xk
i , wk

i }]

Quantifying Uncertainty 61

Summary IIT(D)

Totally Cooked Up Example

Xk−1 25Xk−1Xk = + + 8 cos(1.2k) + vk−12 1 + Xk
2
−1

X 2
Yk = k + ηk w

ηk ∼ N(0, R)

vk−1 ∼ N(0, Qk−1)

Quantifying Uncertainty 62

http:cos(1.2k

�

�

�

�

�

Summary IIT(D)

Brain Maalish

Sar jo tera chakaraye

Ya matrix dooba jaye

Aja pyare, paas hamare,

Kahe Ghabaraye,

Kahe Ghabaraye

Brain Maalish!

Covered much, but small portion of the subject

Computational Atmospheric Statistics at some point in time.

DO THE PROBLEMS!

By email, by skype.

In person in August.

Thanks much for coming, critical feedback welcome!

Quantifying Uncertainty 63

I

I

I

I

I

MIT OpenCourseWare
http://ocw.mit.edu

12.S990 Quantifying Uncertainty
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Summary IIT(D)

