Regression Machines

Rich Literature
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You know the basic idea:
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where z;” can be R.V. too, but generally not considered as such.

GLM

g(Bly) = > 28,
W = sz('j)ﬁi

g(p9)) is a link function

1) is mean



h 1is a canonical variable

Y — Exponential family
g — Somewhat arbitrary but a few hints

1. =g 1(h), so a nicely invertible g.
2. g~ maps 2 § into admissible ranges for p.

Why bother?
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Ordinary linear regression

If /for:



Essentially vary around a central value. GLM extends it to a range of distributions - the Exponential
Family.

Link Functions.
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Many others

How to solve?

Recall (EM for Exponential Family):



IwLS A" =aTpty

V' (u;) = Variance function

Binomial  u(1 — p)

Gamma 2
Normal 1
Poisson L

etc
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Repeat.



Generalized Additive Model (GAM)

GLM:  g(E[")]) =2"

Cop
GAM: g(E[y(i)]) = fo+ Z fz'(%(j))

=1 Covariates

and E[fz(xl)} =0V

Example:
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9(p) = ao + zay + axx® + agw

f(z)

Polynomials
Splines...



Spline Reconstruction:
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Require Smoothness

Also — Look up MARS

MARS




y =S+ a; max(0, x — 10) + ag max(0, z — 20)

f(z) =; CTZ %(x)

weights Basis

B;:
1. Constant function
2. Hinge function at knots
3. Product of hinge functions
How it works:
e Start with intercept (mean of y;):
e Then: (Forward Pass):
— A pair of basis function that gives maximum reduction in fit max(0, x — ¢); max(0, ¢ — x).
— New basis function:
« Has all “Parent” (previous) basis
x Requires additional search through variables and values
Backward Pass:
e Forward pass — overfits

e Backward pass — (pruning): Eliminate terms “one by one” and pick best model from pruning.



Regression by support vectors:

y=wr+b

o= 0, lyi — f(@i)| < e
|y — f(x;)| — € otherwise



Some “intuition:”
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Original: y=wzx+b
Mini: 3||w]|?, such that
yi — wx; — b <€

With soft margin:  3||w||?, such that

yi —wr; —b < e+ &
wri +b—y; < e+ &
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Soft Margins are a way to relax constraints:

E-sensitive Quadratic

Other: Huber etc.
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Support vector Expansion

To Calculate b:
Karush-Kuhn-Tucker(KKT) Conditions:

(C—CVZ')&IO
(C—af)& =0
aile+& —yi+wr+0)=0
af(e+& +yi—wr—b)=0
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Note:
Only samples (z;,y;) with of = C lie outside e— insensitive region.

a;af =0  — Satisty KKT — Support vectors.
This implies that vectors that satisfy KKT condition are the support vectors.

Regression Traces
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Why does this not work?
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it negative error
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The splits must come from the feature:

YA
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Mechanism /Method

a. Consider all values of all features in Set.
v !
Response Covariate

b. Pick a feature and value that splits data into two, such that the total variance of Splits is reduced the
most.

c. Continue till some termination criterion.

Mechanisms for Regression

Machine Learning

Divide and Con.: Regression Trees
Margin Maximization: Support Vectors

[} Smoothness: Spline model, MARS
Randomness: GLM and GAM
Nonlinearity: Kernel Machines

Statistics
SLR € MLR € GLM € GAM.
Some Limitations
1. Overfitting (We saw this is density estimation).
2. Greedy algorithms - local convergence.

How to fix?
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Bagging and Boosting
Y

Randomization + Aggregation

Bagging = Bootstrap Aggregating
Bagging (Breiman)
a. Generate Bootstrap Samples (Sampling with replacement)
b. “Train” Regression Machine on Each

c. Average the predictors, quantify variability

Boosting
X, Subspace
Estimation
X, w, Aggregate
Prediction
(1)2
X

For classification (response is {0,1}), AdaBoost (and variants).
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Gradient boosting (Regression)

Train a “tree” {f1,...fu}

Compute residuals for each m = 1...M

o r; =vy; — fu—1(x;) - sum all the way to M — 1.

Fit a “tree” tor; : fu

Add fa
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