Lecture 10,12.S990

Regression Machines

DATA
$$\{\underline{u_i}, \underline{y_i}\} \xrightarrow{Model} y \approx f(x)$$

Predictor Predictands

Rich Literature

Examples:

Recall:
$$\underbrace{\frac{Y}{\uparrow}}_{\text{Output}} = \underbrace{\frac{U}{\uparrow}}_{\text{Det. Stochas.}} \underbrace{\frac{X}{\uparrow}}_{POD} \xrightarrow{POD} \xrightarrow{\text{Eigen basis}}_{gPC} \\ RSM \right\} \rightarrow \text{Polynomial Chaos}$$

EnKF:
$$\underline{\underline{A}}^a = \underline{\underline{A}}^f \underline{\mathscr{Z}} \longrightarrow \text{Update Equation}$$

AR-model etc.

You know the basic idea:

$$y^{(j)} = \sum_{i} x_i^{(j)} \beta_i + \underline{\eta}^{(j)}$$
We are
$$\underline{y^{(j)}} \approx \sum_{i} x_i^{(j)} \beta_i + \underline{\eta}^{(j)}$$

$$\downarrow \qquad \qquad \downarrow$$
R.V.
$$Homosedastic$$

$$\underline{\eta}^{(j)} = \underline{\eta}$$

where $x_i^{(j)}$ can be R.V. too, but generally not considered as such.

GLM

$$g(E[y^{(j)}]) \approx \sum_{i} x_{i}^{(j)} \beta_{i}$$
$$h^{(j)} \doteq \sum_{i} x_{i}^{(j)} \beta_{i}$$
$$g(\mu^{(j)}) = h^{(j)}$$

 $g(\mu^{(j)})$ is a link function $\mu^{(j)}$ is mean

h is a canonical variable

 $Y \longrightarrow \text{Exponential family}$

 $g \longrightarrow$ Somewhat arbitrary but a few hints

- 1. $\mu = g^{-1}(h)$, so a nicely invertible g. 2. g^{-1} maps $\underline{\underline{x}}^T \underline{\beta}$ into admissible ranges for μ .

Why bother?

$$Y^{(j)} = \sum_{i=1}^{n} x_i^{(j)} \beta_i + \eta$$

Ordinary linear regression

$$E[Y^{(j)}|x_1^{(j)}\dots x_n^{(j)}]$$

If/for:

$$Y \sim N(...)$$

$$\bar{Y} + \tilde{Y} = \sum_{i=1}^{n} x_i \beta_i + \sum_{i=1}^{n} \delta x_i \beta_i$$

Essentially vary around a central value. GLM extends it to a range of distributions - the Exponential Family.

Link Functions.

Poisson
$$\ln(\mu) = \underline{x}^T \underline{\beta};$$

$$\mu = \exp\left(\underline{x}^T \underline{\beta}\right)$$

$$\uparrow \qquad \{0,1,..\}$$
Categorical Logit
$$x \in \begin{cases} 1 - P_1 \\ \vdots \\ k - P_k \end{cases}$$

$$\mu = \frac{1}{1 + e^{-\underline{x}^T \underline{\beta}}}$$
Many others

How to solve?

Recall (EM for Exponential Family):

$$\underline{IWLS} \qquad h_i^{(t)} = \underline{x}_i^T \beta^{(t-1)}$$

$$\mu_i^{(t)} = g^{-1}(h_i^{(t)})$$

$$Z_i^{(t)} = h_i^{(t)} + (y_i - \mu_i^{(t)}) \left[\frac{\partial g}{\partial \mu_i} \right]^{(t)}$$

$$w_i^{(t)} = \left[\left(\frac{\partial g}{\partial \mu_i} \right)^2 \mathcal{O}(\mu_i) \right]^{-1}$$

 $V(\mu_i) \equiv \text{Variance function}$

Binomial
$$\mu(1-\mu)$$

Gamma μ^2
Normal 1
Poisson μ
etc

$$w_i^{(t)} \Big[Z_i^{(t)} - x_i^{(t)} \beta^{(t)} \Big]^2 \longleftarrow \text{ Weighted Least Squares}$$

Repeat.

Generalized Additive Model (GAM)

GLM:
$$g(E[y^{(i)}]) = \underline{x}^T \underline{\beta}$$

GAM: $g(E[y^{(i)}]) = f_0 + \sum_{i=1}^P \underbrace{f_i(x_i^{(j)})}_{\text{Covariates}}$
and $E[f_i(x_i)] = 0 \,\forall i$

Example:

$$g(\mu) = a_0 + \underbrace{xa_1 + a_2x^2 + a_3x^3}_{f(x)}$$

Polynomials

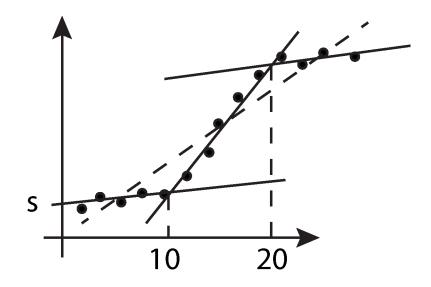
Splines...

${\bf Spline}\,\,{\bf Reconstruction:}\,\,$

$$\sum_{j} \left[y_i^{(j)} - \sum_{i} f_i(x_i^{(j)}) - f_0 \right]^2 + \sum_{i} \lambda_i \underbrace{\int_{\text{Require Smoothness}}}_{\text{Require Smoothness}}$$

Also \rightarrow Look up MARS

\mathbf{MARS}



$$y = S + a_1 \max(0, x - 10) + a_2 \max(0, x - 20)$$
$$f(x) = \sum_{i=1}^{K} c_i B_i(x)$$
$$\uparrow \uparrow_{\text{weights Basis}}$$

B_i :

- 1. Constant function
- 2. Hinge function at knots
- 3. Product of hinge functions

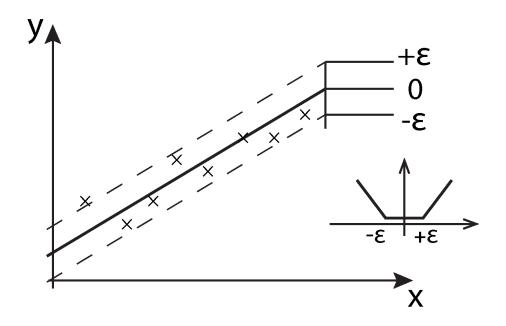
How it works:

- Start with intercept (mean of y_i):
- Then: (Forward Pass):
 - A pair of basis function that gives maximum reduction in fit $\max(0, x c)$; $\max(0, c x)$.
 - New basis function:
 - * Has all "Parent" (previous) basis
 - * Requires additional search through variables and values

Backward Pass:

- Forward pass \rightarrow overfits
- Backward pass \rightarrow (pruning): Eliminate terms "one by one" and pick best model from pruning.

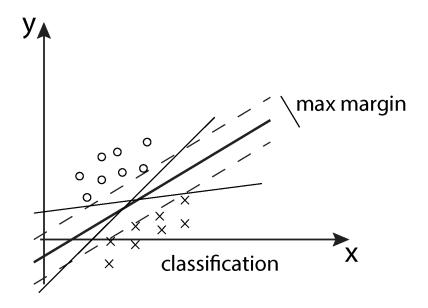
Regression by support vectors:



$$y = \omega x + b$$

$$\alpha \equiv \begin{cases} 0, & |y_i - f(x_i)| \le \epsilon \\ |y_i - f(x_i)| - \epsilon & \text{otherwise} \end{cases}$$

Some "intuition:"



Original: $y = \omega x + b$

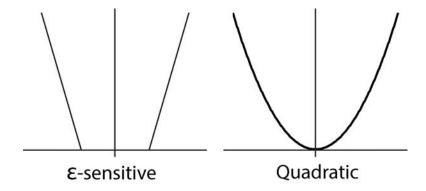
Mini: $\frac{1}{2}||\omega||^2$, such that

 $|y_i - \omega x_i - b| \le \epsilon$

With soft margin: $\frac{1}{2}||\omega||^2$, such that

$$\begin{cases} y_i - \omega x_i - b \le \epsilon + \xi_i \\ \omega x_i + b - y_i \le \epsilon + \xi_i^* \end{cases}$$

Soft Margins are a way to relax constraints:



Other: Huber etc.

$$L = \frac{1}{2} ||\omega||^2 + C \sum_{i=1}^n (\xi_i + \xi_i^*)$$

$$- \sum_{i=1}^n \alpha_i [\epsilon + \xi_i - y_i + \omega x_i + b]$$

$$- \sum_{i=1}^n \alpha_i^* [\epsilon + \xi_i^* + y_i - \omega x_i - b]$$

$$- \sum_{i=1}^n (\eta_i \xi_i + \eta_i^* \xi_i^*)$$

$$\alpha_i, \alpha_i^*, \eta_i, \eta_i^* \geq 0$$

$$\frac{\partial L}{\partial b} = \sum_{i=1}^{n} (\alpha_i^* - \alpha_i) = 0$$

$$\frac{\partial L}{\partial \omega} = \omega - \sum_{i=1}^{n} (\alpha_i^* - \alpha_i) x_i = 0$$
So:
$$y_i = \left(\sum_{j} (\alpha_j^* - \alpha_j)\right) x_i + b$$
Support vector Expansion

To Calculate b:

Karush-Kuhn-Tucker(KKT) Conditions:

$$(C - \alpha_i)\xi_i = 0$$

$$(C - \alpha_i^*)\xi_i^* = 0$$

$$\alpha_i(\epsilon + \xi_i - y_i + \omega x + b) = 0$$

$$\alpha_i^*(\epsilon + \xi_i^* + y_i - \omega x - b) = 0$$

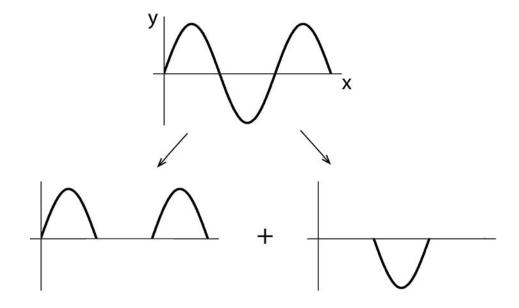
Note:

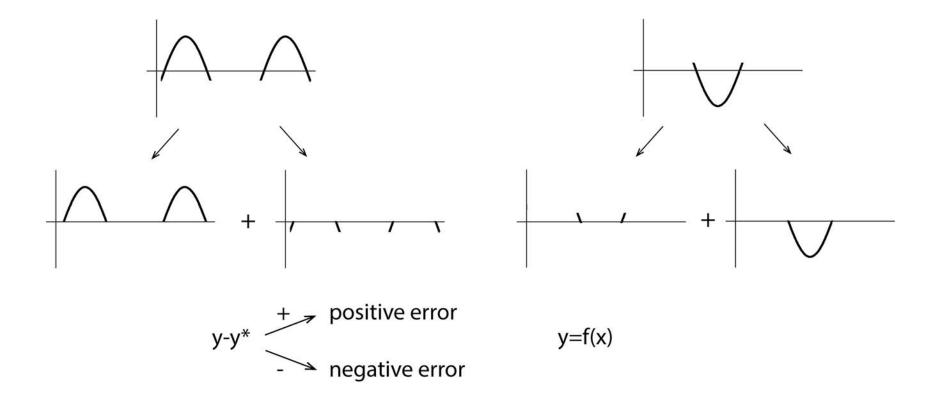
Only samples (x_i, y_i) with $\alpha_i^* = C$ lie outside ϵ - insensitive region.

$$\alpha_i \alpha_i^* = 0 \longrightarrow \text{Satisfy KKT} \longrightarrow \text{Support vectors.}$$

This implies that vectors that satisfy KKT condition are the support vectors.

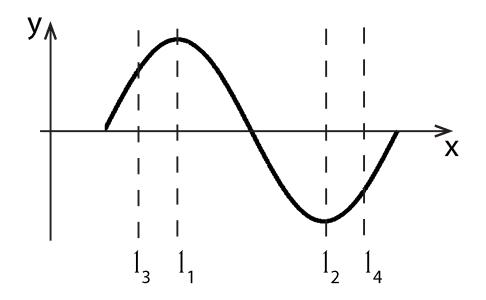
Regression Traces

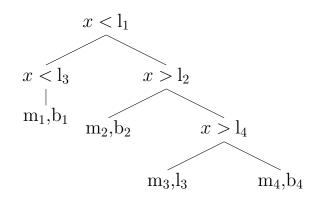




Why does this not work?

The splits must come from the $\underline{\text{feature}}$:





Mechanism/Method

a. Consider all values of all features in Set.

Response

Covariate

b. Pick a <u>feature</u> and <u>value</u> that splits data into two, such that the total variance of Splits is reduced the most.

c. Continue till some termination criterion.

Mechanisms for Regression

Machine Learning

Divide and Con.:

Regression Trees

Margin Maximization:

Support Vectors

Smoothness:

Spline model, MARS

Randomness:

GLM and GAM

Nonlinearity:

Kernel Machines

Statistics

 $SLR \in MLR \in GLM \in GAM$.

Some Limitations

- 1. Overfitting (We saw this is density estimation).
- 2. Greedy algorithms local convergence.

How to fix?

Bagging and Boosting

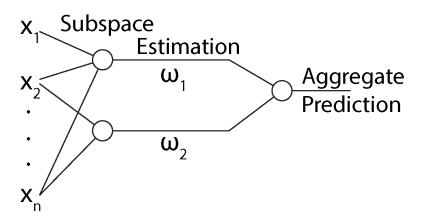
Randomization + Aggregation

 $Bagging \Rightarrow Bootstrap Aggregating$

Bagging (Breiman)

- a. Generate Bootstrap Samples (Sampling with replacement)
- **b.** "Train" Regression Machine on Each
- c. Average the predictors, quantify variability

Boosting



For classification (response is $\{0,1\}$), AdaBoost (and variants).

Gradient boosting (Regression)

.

- Train a "tree" $\{f_1, ... f_M\}$
- Compute residuals for each m=1...M
- $r_i = y_i f_{M-1}(x_i)$ sum all the way to M-1.
- Fit a "tree" to $r_i:f_M$
- Add f_M

MIT OpenCourseWare http://ocw.mit.edu

12.S990 Quantifying Uncertainty Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.