Lectures 22/23: Expected Present Discounted Values

- EPDV
- Bond Prices
- Stock Prices

EPDV

- Figure 14-3
- $1 /(1+\mathrm{i}(\mathrm{t}))$: present discounted value of one dollar received next year
- An asset that expects to pay: $\mathrm{d}(\mathrm{t}), \mathrm{d}^{\mathrm{e}}(\mathrm{t}+1)$,
.... has a EPDV of:

$$
\begin{aligned}
& \mathbf{V}=\mathbf{d}(\mathbf{t})+\mathbf{d}^{\mathrm{e}}(\mathbf{t}+\mathbf{1}) /(1+\mathbf{i}(\mathbf{t}))+ \\
& \quad \mathbf{d}^{\mathrm{e}}(\mathbf{t}+2) /\left((1+\mathbf{i}(\mathbf{t}))\left(1+\mathbf{i}^{\mathrm{e}}(\mathbf{t}+\mathbf{1})\right)+\ldots\right.
\end{aligned}
$$

Using Present Values

- Two general principles:
-V rises with an increase in $\mathrm{d}^{\mathrm{e}}(\mathrm{t}+\mathrm{s})$
-V falls with an increase in $\mathrm{i}^{\mathrm{e}}(\mathrm{t}+\mathrm{s})$

$$
\begin{aligned}
& \mathbf{V}=\mathbf{d}(\mathbf{t})+\mathbf{d}^{\mathrm{e}}(\mathbf{t}+\mathbf{1}) /(1+\mathbf{i}(\mathbf{t}))+ \\
& \mathbf{d}^{\mathrm{e}}(\mathbf{t}+2) /\left((1+\mathbf{i}(\mathbf{t}))\left(1+\mathbf{i}^{\mathrm{e}}(\mathbf{t}+\mathbf{1})\right)+\ldots .\right.
\end{aligned}
$$

Examples

$V=d(t)+d^{e}(t+1) /(1+i(t))+d^{e}(t+2) /\left((1+i(t))\left(1+i^{e}(t+1)\right)+\ldots\right.$
If $\mathbf{i}^{\mathrm{e}}(\mathbf{t}+\mathbf{s})=\mathbf{i}$ and $\mathbf{d}^{\mathrm{e}}(\mathbf{t}+\mathbf{s})=\mathbf{d}$
$V=d\left[1+1 /(1+i)+1 /(1+i)^{2}+\ldots+1 /(1+i)^{n-1}\right]$
$\mathbf{V}=\mathbf{d}\left[1-1 /(1+\mathbf{i})^{\mathrm{n}}\right] /[1-1 /(1+\mathbf{i})]$
Example: Lottery prize of \$1m paid in 20 installments of $\$ 50 \mathrm{k}$; if $\mathrm{i}=6 \%$ =>
$\mathrm{V}=\mathbf{\$ 5 0 , 0 0 0} * \mathbf{0 . 6 8 8} / 0.067=\$ 608,000$

Note: If $\mathbf{i}=\mathbf{0}=>\mathbf{V}=\Sigma \mathbf{d}=\mathbf{n * d}=\mathbf{\$ 1 m}$

Examples

$$
\mathbf{V}=\mathrm{d}\left[1-1 /(1+\mathbf{i})^{\mathrm{n}}\right] /[1-1 /(1+\mathbf{i})]
$$

Example: A consol n->infinity, payments start next year
$\mathbf{V}=\mathbf{d} /(\mathbf{1}+\mathbf{i})[\mathbf{1} /(\mathbf{i} /(\mathbf{1} \mathbf{i}))]=\mathbf{d} / \mathbf{i}$
If $\mathrm{d}=\mathbf{\$ 1 0}$ and $\mathrm{i}=\mathbf{0 . 0 5}=>\mathbf{C}=\mathbf{\$ 2 0 0}$

