Lectures 22/23: Expected Present Discounted Values

- EPDV
- Bond Prices
- Stock Prices

EPDV

- Figure 14-3
- 1/(1+i(t)) : **present discounted value** of one dollar received next year
- An asset that expects to pay: d(t), d^e(t+1), has a EPDV of:

$$\begin{split} \mathbf{V} &= \mathbf{d}(t) + \frac{d^e(t+1)}{(1+i(t))} + \\ & \frac{d^e(t+2)}{((1+i(t))(1+i^e(t+1)))} + \dots \end{split}$$

Using Present Values

- Two general principles:
 - V rises with an increase in d^e(t+s)
 - V falls with an increase in $i^{e}(t+s)$
- $$\begin{split} V &= d(t) + \frac{d^e(t+1)}{(1+i(t))} + \\ \frac{d^e(t+2)}{((1+i(t))(1+i^e(t+1)))} + \dots \end{split}$$

Examples

 $V = d(t) + \frac{d^{e}(t+1)}{(1+i(t))} + \frac{d^{e}(t+2)}{((1+i(t))(1+i^{e}(t+1)))} + \dots$

If $i^e(t+s) = i$ and $d^e(t+s) = d$

$$\mathbf{V} = \mathbf{d} \left[1 + \frac{1}{(1+i)} + \frac{1}{(1+i)^2} + \dots + \frac{1}{(1+i)^{n-1}} \right]$$

V = d [1-1/(1+i)ⁿ] / [1-1/(1+i)] Example: Lottery prize of \$1m paid in 20 installments of \$50k; if i=6% => V = \$50,000 * 0.688/0.067 = \$608,000

Note: If $i=0 = > V = \Sigma d = n^*d = $1m$

Examples

$V = d \left[\frac{1-1}{(1+i)^n} \right] / \left[\frac{1-1}{(1+i)} \right]$

Example: A consol n->infinity, payments start next year

V = d/(1+i) [1/(i/(1+i))] = d/iIf d = \$10 and i=0.05 => C = \$200