Lectures 19-20: Savings and Technology

• Review

• Cont.: Change in Saving rate

• Technological progress

Solow's Growth Model

$$A = 1, N = 1$$

 $Y = y = f(k)$
 $S = sY$
 $I = S$
 $K(t+1) = (1-d) K(t) + I(t)$
 $=>$
 $k(t+1) - k(t) = s f(k(t)) - d k(t)$

Steady State and the Saving Rate In steady state: $k(t+1)=k(t)=k^*$

k(t+1) - k(t) = s f(k(t)) - d k(t)=> $sf(k^*) = d k^*$

$$g_y^* = 0$$
 (if n>0, $g_y^* = 0 => g_Y^= g_K^= n>0$)

In steady state, the saving rate does NOT matter for per-capita growth.

It does matter, however, for the level of per-capita output and transitional dynamics

Figures 11-3, 11-4

Some numbers

- $Y = (KN)^{0.5}$ => $y = (K/N)^{0.5} = k^{0.5}$
- $k(t+1)-k(t) = s k(t)^{0.5} dk(t)$
- St.St: $k^* = (s/d)^2$; $y^* = (s/d)$
- s0=d=0.1; s1=0.2 =>
- k^* goes from 1 to 4 and y^* from 1 to 2.
- Higher saving=> need to maintain more capital

•
$$c^* = y^* - dk^*$$

• The Golden Rule: Table 11-1

Dynamics

- Dynamics: k(1) = 1+0.2-0.1 = 1.1>1
- ... and so on
- Figure 11-7

Technological Progress

- Table 12-2
- $Y = F(K,N,A) \dots Y = F(K,NA)$
- y = Y/NA = F(K/NA, 1) = f(K/NA) = f(k)
- I/AN = s Y/AN
- In order to maintain a given k, we need to invest at least:

 $(d+g_A + g_N) K$

Technological Progress

 $I/AN > (d+g_A + g_N) (K/AN)$ => k grows

Figure 12-2 Table 12-1 Figure 12-3 / 12-4

A Decline in g_A

- Table 12-2
- Table 12-1
- (use) Figure 12-2
- Why? (we don't know...)
 - Measurement error?
 - The rise of the Service Sector?
 - Figure 12-5
 - Decreased R&D Expenditure?
 - Table 12-3

The New Economy and Productivity Growth

Private Non-Farm Business	1948- 1973	1973- 1979	1979- 1990	1990- 1995	1995- 2000
Labor productivity	2.9	1.2	1.4	1.6	2.5
Multifactor productivity	1.9	0.4	0.3	0.6	1.1
Manufacturing	1.5	-0.6	1.1	1.3	2.1
Industrial Mach.	0.7	0.2	3.2	3.1	5.8
Electronic Mach.	2.1	1.0	3.0	6.0	7.4

Source: BLS.

Investment Has Increased

Figure by MIT OCW. After source: BEA; Datastream; St. Louis Federal Reserve.

The Price of New Capital

Figure by MIT OCW. After source: BEA; Datastream; St. Louis Federal Reserve.