1 Uncertainty and Risk Aversion

A farmer believes that there is a 50-50 chance that the next growing season will be abnormally rainy. His expected utility function has the form

\[U(Y_{NR}, Y_R) = \frac{1}{2} Y_{NR}^{1-\theta} + \frac{1}{2} Y_R^{1-\theta} \]

where \(Y_{NR} \) and \(Y_R \) represent the farmer’s income in the states of "normal rain" and "rainy" respectively.

a) Let \(\theta = 1/2 \). Suppose the farmer must choose between two crops that promise the following income prospects

<table>
<thead>
<tr>
<th>Crop</th>
<th>(Y_{NR})</th>
<th>(Y_R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat</td>
<td>$28,000</td>
<td>10,000</td>
</tr>
<tr>
<td>Corn</td>
<td>19,000</td>
<td>15,000</td>
</tr>
</tbody>
</table>

Which of the crops will he plant?

b) Suppose the farmer can plant half his field with each crop. This means that in the \(Y_{NR} \) state he will earn \$14,000+9,500=23,500 and in the \(Y_R \) state he will earn \$5,000+7,500=12,500. Would he choose to do this?

c) What mix of wheat and corn would provide maximum expected utility to this farmer?

d) Let \(\theta = 3/4 \). How would your answer to (c) change in this case?

2 Pareto Optimality

Suppose individuals denoted by \(i \) have happiness functions that only depend on one’s own consumption, called \(u_i(x_i) \) where \(x_i \) is a vector of one’s own consumption. However, individuals are altruists in that they care about other people’s happiness also. Let \(I \) be the total number of people. Each person’s overall utility function is \(U_i(x_1, \ldots, x_I) \) where \(U_i \) has the form

\[U_i(x_1, \ldots, x_I) = U_i(u_1(x_1), u_2(x_2), \ldots, u_I(x_I)) \]

Here, individual \(i \)’s utility depends on all the other people’s happiness functions \(u_1(x_1), u_2(x_2), \ldots, u_I(x_I) \).
a) Show that if consumption allocation $x = (x_1, \ldots, x_I)$ is Pareto optimal under altruistic utility function $U_i(\cdot)$, then allocation x is also Pareto optimal under the individualistic utility function $u_i(\cdot)$ (where individuals only care about their own happiness).

b) Does this mean that a community of altruists can use standard competitive markets to attain Pareto optimality?

3 Dynamic Programming

Consider a farmer who lives for T periods. In each period t, the farmer chooses how much to consume (c_t) and how many seeds to plant to be available in the next period (K_{t+1}). In particular, consumption at date t is given by

\[c_t = \alpha K_t - K_{t+1} \]

where $\alpha > 0$ is the yield to seed ratio. The farmer then solves the problem

\[
\max_{\{K_{t+1}, c_t\}_{t=1}^T} \sum_{t=1}^T \beta^{t-1} u(c_t) \tag{1}
\]

s.t.
\[
c_t = \alpha K_t - K_{t+1} \tag{2}
\]
\[
c_t \geq 0
\]

where $u(c_t)$ is the utility the farmer gets from consumption in period t, $\beta \in (0, 1)$ and $K_1 > 0$ is given exogenously (e.g. seeds the farmer inherited when he was born). Let $\{K_{t+1}^*, c_t^*\}_{t=1}^T$ solve the above problem. That is, the farmer picks a sequence of consumption and seed-planting decisions in each period to solve the above problem.

a) Argue that, regardless of the value of T, we will always have that $K_{T+1}^* = 0$.

b) Now let’s look at the case where $T = 2$. Use the fact that $K_3^* = 0$ and the constraints to eliminate c_t and write the farmer’s problem as an optimization problem in one variable only, K_2^*. What constraint must K_2^* satisfy?

c) Suppose the farmer’s per-period utility takes the form $u(c_t) = c_t$. Solve for the farmer’s optimal planting decision, K_2^*. (Hint: there will be two cases, depending on the values of α and β). What is consumption in each period?
14.04: Intermediate Microeconomic Theory
Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.