Problem Set 4

14.04, Fall 2020

Prof: Robert Townsend
TA: Laura Zhang and Michael Wong

1 Walrasian Equilibrium with Production

There is an economy with 2 goods and I consumers. Each consumer i has the following utility function:

$$
u^{i}\left(x_{1}^{i}, x_{2}^{i}\right)=x_{1}^{i}+\log x_{i}^{2}
$$

Each consumer starts with an endowment of 4 units of good 1 and none of good 2. Good 2 can be produced from good 1 using the following production function:

$$
y_{2}=\sqrt{z_{1}}
$$

where z_{1} is the amount of good 1 used as an input and y_{2} the output of good 2 produced. There is a single firm that produces good 2 from good 1 and each consumer owns an equal share of this firm, so they each get an equal share of profits.
The price of good 1 is normalized to 1 . Let the price of good 2 be p. profits.
a) Write down the conditions that a price p and an allocation $\left(\left\{x_{1}^{i}\right\}_{i=1}^{I},\left\{x_{2}^{i}\right\}_{i=1}^{I}, y_{2}, z_{1}\right)$ must satisfy to be a Walrasian equilibrium.
b) Solve the firm's profit maximization problem for an arbitrary p. What is its profit function, $\pi(p)$?
c) Solve the consumer's utility maximization problem for an arbitrary p.
d) Using your answers to b) and c) and market clearing, find the Walrasian equilibrium.
e) Calculate each consumer's utility in equilibrium. How does it depend on I ? Can you give any intuition for this result?

2 Trade and the $2 \times 2 \times 2$ Model

Suppose there are two goods x, y, two factors K, L, and countries A, B have the same preferences and technology. Preferences follow the function

$$
U_{i}\left(x_{i}, y_{i}\right)=2 \sqrt{x_{i}}+2 \sqrt{y_{i}}
$$

and production technology is Leontief with good x following the production function

$$
x=f\left(K_{x}, L_{x}\right)=\min \left\{2 K_{x}, L_{x}\right\}
$$

and good y following the production function

$$
y=g\left(K_{y}, L_{y}\right)=\min \left\{K_{y}, L_{y}\right\}
$$

Country A has endowments $\omega_{A}=\left(\overline{K_{A}}, \overline{L_{A}}\right)=(20,30)$, and country B has endowments $\omega_{A}=\left(\overline{K_{A}}, \overline{L_{A}}\right)=(35,50)$. The prices paid for capital and labor are r and w respectively.
a) Suppose the world is in autarky. We will go through the steps to solve for equilibrium prices $\left(p_{x}^{c}, p_{y}^{c}, r^{c}, w^{c}\right)$, consumption, and factor allocations in the two countries.
i) We will find the equilibrium conditions for the production side first. What are the unit-cost functions for production of the two goods?
ii) Which good is more capital-intensive?
iii) Notice that the production function is CRS and therefore profits are zero. What are the equations determining prices p_{x}, p_{y} as a function of r and w ?
iv) From firm optimization and market clearing for the factor endowments for each country, calculate the factor allocations $K_{x}^{c}, L_{x}^{c}, K_{y}^{c}, L_{y}^{c}$ for each country $c \in\{A, B\}$. Calculate total production for goods x^{c}, y^{c}.
v) Now we move to the consumer side. From utility maximization (assume an interior solution), what must the price-ratio equal?
vi) We find the general equilibrium by putting the production and consumer conditions together. Using the zero-profit equations and the utility maximization condition, solve for equilibrium prices $\left(p_{x}^{c}, p_{y}^{c}, r^{c}, w^{c}\right)$.
Hint: Use Walras' Law and normalize wage $w^{c}=1$.
b) Suppose now there is free trade. We will go through the steps to solve for equilibrium prices, consumption, factor allocations, and net exports from A to B.
i) With free trade and the same technology and preferences in both countries, what does this tell us about good and factor prices in country A compared to country B ?
ii) Using your answer in (i), solve for good and factor prices.
iii) Do factor allocations and production change with free trade? How about consumption?
iv) Calculate net exports from A to B for goods x and y. Hint: calculate total income for each country, then solve for consumption using the good prices.
c) Interpret your results from c) in terms of the Heckscher-Ohlin theorem.

MIT OpenCourseWare
https://ocw.mit.edu/

14.04: Intermediate Microeconomic Theory

 Fall 2020For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

